МОДЕЛИРОВАНИЕ ПОТЕРЬ В РАДИОКАНАЛЕ МИЛЛИМЕТРОВОГО ДИАПАЗОНА МЕТОДОМ ПАРАБОЛИЧЕСКОГО УРАВНЕНИЯ
https://doi.org/10.31854/1813-324X-2019-5-2-108-116
Аннотация
Об авторах
А. Г. ВладыкоРоссия
М. С. Лытаев
Россия
Список литературы
1. Rappaport T.S., Sun S., Mayzus R., Zhao H., Azar Y., Wang K., et al. Millimeter Wave Mobile Communications for 5G Cellular: It will work! // IEEE Access. 2013. Vol. 1. PP. 335-349. DOI:10.1109/ACCESS.2013.2260813
2. Salous S., Degli Esposti V., Fuschini F., Thomae R.S., Mueller R., Dupleich D., et al. Millimeter-Wave Propagation: Characterization and modeling toward fifth-generation systems // IEEE Antennas and Propagation Magazine. 2016. Vol. 58. Iss. 6. PP. 115-127. DOI:10.1109/MAP.2016.2609815
3. Rappaport T.S., Xing Y., MacCartney G.R., Molisch A.F., Mellios E., Zhang J. Overview of Millimeter Wave Communications for Fifth Generation (5G) Wireless Networks - With a Focus on Propagation Models // IEEE Transactions on Antennas and Propagation. 2017. Vol. 65. Iss. 12. PP. 6213-6230. DOI:10.1109/TAP.2017.2734243
4. Petrov V., Komarov M., Moltchanov D., Jornet J.M., Koucheryavy Y. Interference and Sinr in Millimeter Wave and Terahertz Communication Systems With Blocking and Directional Antennas // IEEE Transactions on Wireless Communications. 2017. Vol. 16. Iss. 3. PP. 1791-1808. DOI:10.1109/TWC.2017.2654351
5. Shafi M., Molisch A.F., Smith P.J., Haustein T., Zhu P., De Silva P. et al. 5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice // IEEE Journal on Selected Areas in Communications. 2017. Vol. 35. Iss. 6. PP. 1201-1221. DOI:10.1109/JSAC.2017.2692307
6. Janaswamy R. Radiowave Propagation and Smart Antennas for Wireless Communications. New York: Kluwer Academic Publishers, 2001. 331 p.
7. Jörke P., Böcker S., Liedmann F., Wietfeld C. Urban channel models for smart city IoT-networks based on empirical measurements of LoRa-links at 433 and 868 MHz // Proceedings of the 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC, Montreal, Canada, 8-13 October 2017). Piscataway, NJ: IEEE, 2017. DOI:10.1109/PIMRC.2017.8292708
8. Crabtree C., Kern H.L. Using Electromagnetic Signal Propagation Models for Radio and Television Broadcasts: An Introduction // Political Analysis. 2018. Vol. 26. Iss. 3. PP. 348-355. DOI:10.1017/pan.2018.8
9. Фокин Г.А. Обзор моделей радиоканала связи с беспилотными летательными аппаратами // Труды учебных заведений связи. 2018. Т. 4. № 4. С. 85-101. DOI:10.31854/1813-324X-2018-4-4-85-101
10. Lytaev M.S., Vladyko A.G. On Application of Parabolic Equation Method to Propagation Modeling in Millimeter-Wave Bands // Proceedings of the 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT, Moscow, Russia, 5-9 November 2018). Piscataway, NJ: IEEE, 2018. DOI:10.1109/ICUMT.2018.8631206
11. Levy M. Parabolic Equation Methods for Electromagnetic Wave Propagation. London: The Institution of Electrical Engineers, 2000. 336 p.
12. Permyakov V.A., Mikhailov M.S., Malevich E.S. Analysis of Propagation of Electromagnetic Waves in Difficult Conditions by the Parabolic Equation Method // IEEE Transactions on Antennas and Propagation. 2019. Vol. 67. Iss. 4. PP. 2167-2175. DOI:10.1109/TAP.2019.2905674
13. Леонтович М.А., Фок В.А. Решение задачи о распространении электромагнитных волн вдоль поверхности Земли по методу параболического уравнения // Журнал экспериментальной и теоретической физики. 1946. Т. 16. С. 557-573.
14. Lytaev M.S., Vladyko A.G. Split-step Padé Approximations of the Helmholtz Equation for Radio Coverage Prediction over Irregular Terrain // Proceedings of Advances in Wireless and Optical Communications (RTUWO, Riga, Latvia, 15-16 November 2018). Piscataway, NJ: IEEE, 2018. PP. 179-184. DOI:10.1109/RTUWO.2018.8587886
15. Thalhammer M. High-order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations // SIAM Journal on Numerical Analysis. 2008. Vol. 46. Iss. 4. PP. 2022-2038. DOI:10.1137/060674636
16. Sprouse C.R., Ra'id S.A. An Angle-Dependent Impedance Boundary Condition for the Split-Step Parabolic Equation Method // IEEE Transactions on Antennas and Propagation. 2012. Vol. 60. Iss. 2. PP. 964-970. DOI:10.1109/TAP.2011.2173107
17. Lytaev M.S. Nonlocal Boundary Conditions for Split-Step Padé Approximations of the Helmholtz Equation With Modified Refractive Index // IEEE Antennas Wireless Propagation Letters. 2018. Vol. 17. Iss. 8. PP. 1561-1565. DOI:10.1109/LAWP.2018.2855086
18. Baker G.A. Jr., Graves-Morris P. Padé Approximants. Cambridge: Cambridge University Press, 1996. 760 p.
19. Collins M.D. A split-step Padé solution for the parabolic equation method // The Journal of the Acoustical Society of America. 1993. Vol. 93. Iss. 4. PP. 1736-1742. DOI:10.1121/1.406739
20. Ehrhardt M., Zisowsky A. Discrete non-local boundary conditions for split-step Padé approximations of the one-way Helmholtz equation // Journal of Computational and Applied Mathematics. 2007. Vol. 200. Iss. 2. PP. 471-490. DOI:10.1016/ j.cam.2006.01.001
21. Ozgun O. Recursive Two-Way Parabolic Equation Approach for Modeling Terrain Effects in Tropospheric Propagation // IEEE Transactions on Antennas and Propagation. 2009. Vol. 57. Iss. 9. PP. 2706-2714. DOI:10.1109/TAP.2009.2027166
22. Лытаев М.С. Численный метод расчета тропосферного распространения электромагнитных волн в задачах построения геоинформационных систем дистанционного мониторинга // Труды СПИИРАН. 2018. № 1(56). C. 195-213. DOI:10.15622/sp.56.9
23. Mikhailov M.S., Komarov A.A. Extension of the Parabolic Equation Method in the Time Domain // Proceedings of Progress in Electromagnetics Research Symposium (PIERS-Toyama, Toyama, Japan, 1-4 August 2018). Piscataway, NJ: IEEE, 2018. PP. 357-361. DOI:10.23919/PIERS.2018.8598045
24. Рекомендация МСЭ-R P.676-11 (09/2016). Затухание в атмосферных газах.
25. Рекомендация МСЭ-R P.838-3 (2005). Модель погонного ослабления в дожде, используемая в методах прогнозирования.
26. Shrestha S., Choi D.Y. Rain attenuation statistics over millimeter wave bands in South Korea // Journal of Atmospheric and Solar-Terrestrial Physics. 2017. Vol. 152-153. PP. 1-10. DOI:10.1016/j.jastp.2016.11.004
27. Hong E.S., Lane S. Murrell D., Tarasenko N, Christodoulou C., Keeley J. Estimating Rain Attenuation at 72 and 84 GHz From Raindrop Size Distribution Measurements in Albuquerque, NM, USA // IEEE Geoscience and Remote Sensing Letters. 2019. DOI:10.1109/LGRS.2019.2893906
28. Sheng N., Liao C., Lin W., Zhang Q., Bai R. Modeling of Millimeter-Wave Propagation in Rain Based on Parabolic Equation Method // IEEE Antennas and Wireless Propagation Letters. 2014. Vol. 13. PP. 3-6. DOI:10.1109/LAWP.2013.2294737
29. Wave-propagation. URL: https://github.com/mikelytaev/wave-propagation (дата обращения: 25.03.2019).
Рецензия
Для цитирования:
Владыко А.Г., Лытаев М.С. МОДЕЛИРОВАНИЕ ПОТЕРЬ В РАДИОКАНАЛЕ МИЛЛИМЕТРОВОГО ДИАПАЗОНА МЕТОДОМ ПАРАБОЛИЧЕСКОГО УРАВНЕНИЯ. Труды учебных заведений связи. 2019;5(2):108-116. https://doi.org/10.31854/1813-324X-2019-5-2-108-116
For citation:
Vladyko A..., Lytaev M... Path Loss Modelling in Millimeter Wave Radio Chanel by the Parabolic Equation Method. Proceedings of Telecommunication Universities. 2019;5(2):108-116. (In Russ.) https://doi.org/10.31854/1813-324X-2019-5-2-108-116