Preview

Proceedings of Telecommunication Universities

Advanced search
Cover Image

A Set of Models for Device Positioning in Sixth Generation Networks. Part 2. Review of Algorithms and Accuracy Assessment

https://doi.org/10.31854/1813-324X-2024-10-5-62-90

EDN: DUMKWF

Abstract

Relevance. This work is the second part of a series devoted to the study of a set of positioning models in sixth-generation terahertz networks and solves the problems of systematizing algorithms and assessing the accuracy of determining the location of a user device depending on the configuration and size of the antenna array at the base station.

Purpose. Within the framework of the scientific problem of searching for means of achieving decimeter accuracy of coordinate estimates, outlined in the first part of the cycle, the analysis of accuracy assessment models, a review of algorithms and ways of their optimization, as well as a numerical experiment, performed in this study serve the purpose of justifying the configuration and dimensions of the antenna array used at the base station.

The research method is an analytical review of the state of the problem based on current scientific publications, conceptual modeling, categorical approach, expert combination, comparative analysis, formalization, mathematical and simulation modeling.

Solution / results. The paper presents models for assessing the accuracy of positioning in 6G terahertz networks, formalizes the relationship between primary measurements and coordinate estimates for multi-position and single-position positioning in the near and far zones. It provides an overview of algorithms for geometric positioning and positioning with training for cases of one-stage and two-stage processing; analyzes the specifics of implementing algorithms for simultaneous tracking and map construction. It provides an analysis of the features of optimizing algorithms in offline and online modes. Simulation modeling is used to assess the accuracy for a scenario of territorial distribution with direct visibility and ideal synchronization.

Novelty. Using simulation modeling tools, the achievement of decimeter accuracy of coordinate and orientation estimates of 1° in the terahertz range for a far-field model using a 1 GHz band and a composite antenna array of more than half a thousand elements has been scientifically substantiated.

The theoretical significance lies in establishing the dependence of the accuracy of coordinate and orientation estimates of the device on the configuration and dimensions of the antenna array at the base station.

The practical significance of the developed simulation model lies in the numerical justification of the limits of device positioning accuracy in sixth-generation networks depending on the antenna array used at the base station for a given scenario.

About the Author

G. A. Fokin
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation


References

1. Fokin G. A Set of Models for Device Positioning in Sixth Generation Networks. Part 1. Methods Survey and Problem Statement. Proceedings of Telecommunication Universities. 2024;10(4):73‒98. (in Russ.) DOI:10.31854/1813-324X-2024-10-4-73-98. EDN:FTOVZJ

2. Chen H., Sarieddeen H., Ballal T., Wymeersch H., Alouini M.-S., Al-Naffouri T.Y. A Tutorial on Terahertz-Band Localization for 6G Communication Systems. IEEE Communications Surveys & Tutorials. 2022;24(3):1780‒1815. DOI:10.1109/COMST.2022.3178209

3. Garcia N., Wymeersch H., Larsson E.G., Haimovich A.M., Coulon M. Direct Localization for Massive MIMO. IEEE Transactions on Signal Processing. 2017;65(10):2475‒2487. DOI:10.1109/TSP.2017.2666779

4. Shen Y., Win M.Z. Fundamental Limits of Wideband Localization–Part I: A General Framework. IEEE Transactions on Information Theory. 2010;56(10):4956‒4980. DOI:10.1109/TIT.2010.2060110

5. Shen Y., Wymeersch H., Win M.Z. Fundamental Limits of Wideband Localization. Part II. Cooperative Networks. IEEE Transactions on Information Theory. 2010;56(10):4981‒5000. DOI:10.1109/TIT.2010.2059720

6. Shahmansoori A., Garcia G.E., Destino G., Seco-Granados G., Wymeersch H. 5G Position and Orientation Estimation through Millimeter Wave MIMO. Proceedings of the Globecom Workshops, GC Wkshps, 06‒10 December 2015, San Diego, USA. IEEE, 2015. p.1‒6. DOI:10.1109/GLOCOMW.2015.7413967

7. Shahmansoori A., Garcia G.E., Destino G., Seco-Granados G., Wymeersch H. Position and Orientation Estimation Through Millimeter-Wave MIMO in 5G Systems. IEEE Transactions on Wireless Communications. 2018;17(3):1822‒1835. DOI:10.1109/TWC.2017.2785788

8. Abu-Shaban Z., Zhou X., Abhayapala T., Seco-Granados G., Wymeersch H. Error Bounds for Uplink and Downlink 3D Localization in 5G Millimeter Wave Systems. IEEE Transactions on Wireless Communications. 2018;17(8):4939‒4954. DOI:10.1109/TWC.2018.2832134

9. Abu-Shaban Z., Wymeersch H., Zhou X., Seco-Granados G., Abhayapala T. Random-Phase Beamforming for Initial Access in Millimeter-Wave Cellular Networks. Proceedings of the Global Communications Conference, GLOBECOM, 04‒08 December 2016, Washington, USA. IEEE; 2016. p.1‒6. DOI:10.1109/GLOCOM.2016.7842197

10. Abu-Shaban Z., Wymeersch H., Abhayapala T., Seco-Granados G. Single-Anchor Two-Way Localization Bounds for 5G mmWave Systems. IEEE Transactions on Vehicular Technology. 2020;69(6):6388‒6400. DOI:10.1109/TVT.2020.2987039

11. Wymeersch H., Denis B. Beyond 5G Wireless Localization with Reconfigurable Intelligent Surfaces. Proceedings of the International Conference on Communications, ICC, 07‒11 June 2020, Dublin, Ireland. IEEE; 2020. p.1‒6. DOI:10.1109/ICC40277.2020.9148744

12. Elzanaty A., Guerra A., Guidi F., Alouini M.-S. Reconfigurable Intelligent Surfaces for Localization: Position and Orientation Error Bounds. IEEE Transactions on Signal Processing. 2021;69:5386‒5402. DOI:10.1109/TSP.2021.3101644

13. Elzanaty A., Guerra A., Guidi F., Dardari D., Alouini M.-S. Toward 6G Holographic Localization: Enabling Technologies and Perspectives. IEEE Internet of Things Magazine. 2023;6(3):138‒143. DOI:10.1109/IOTM.001.2200218

14. Keykhosravi K., Keskin M.F., Seco-Granados G., Wymeersch H. SISO RIS-Enabled Joint 3D Downlink Localization and Synchronization. Proceedings of the International Conference on Communications, 14‒23 June 2021, Montreal, Canada. IEEE; 2021. p.1‒6. DOI:10.1109/ICC42927.2021.9500281

15. Huang C., Hu S., Alexandropoulos G.C., Zappone A., Zappone A., Yuen C., et al. Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends. IEEE Wireless Communications. 2020;27(5):118‒125. DOI:10.1109/MWC.001.1900534

16. Basar E., Yildirim I., Kilinc F. Indoor and Outdoor Physical Channel Modeling and Efficient Positioning for Reconfigurable Intelligent Surfaces in mmWave Bands. IEEE Transactions on Communications. 2021;69(12):8600‒8611. DOI:10.1109/TCOMM.2021.3113954

17. He J., Jiang F., Keykhosravi K., Kokkoniemi J., Wymeersch H., Juntti M. Beyond 5G RIS mmWave Systems: Where Communication and Localization Meet. IEEE Access. 2022;10:68075‒68084. DOI:10.1109/ACCESS.2022.3186510

18. Wymeersch H. A Fisher Information Analysis of Joint Localization and Synchronization in near Field. Proceedings of the International Conference on Communications Workshops, ICC Workshops, 07‒11 June 2020, Dublin, Ireland. IEEE, 2020. p.1‒6. DOI:10.1109/ICCWorkshops49005.2020.9145059

19. Nazari M.A., Seco-Granados G., Johannisson P., Wymeersch H. 3D Orientation Estimation with Multiple 5G mmWave Base Stations. Proceedings of the International Conference on Communications, 14‒23 June 2021 Montreal, Canada. IEEE; 2021. p.1‒6. DOI:10.1109/ICC42927.2021.9500778

20. Chepuri S.P., Leus G., van der Veen A.-J. Rigid Body Localization Using Sensor Networks. IEEE Transactions on Signal Processing. 2014;62(18):4911‒4924. DOI:10.1109/TSP.2014.2336621

21. Wen F., Wymeersch H., Peng B., Tay W.P., So H.C., Yang D. A survey on 5G massive MIMO localization. Digital Signal Processing. 2019;94:21–28. DOI:10.1016/j.dsp.2019.05.005

22. Fokin G.A. Development and evaluation of transceiver positioning methods in 6G cognitive radio systems. T-Comm. 2024;18(6):4‒20. (in Russ.) DOI:10.36724/2072-8735-2024-18-6-4-20. EDN:KVNDXU

23. Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation. 1986;34(3):276‒280. DOI:10.1109/TAP.1986.1143830

24. Fortunati S., Grasso R., Gini F., Greco M.S., LePage K. Single snapshot DOA estimation by using compressed sensing. EEURASIP Journal on Advances in Signal Processing. 2014;1(120):1–17. DOI:10.1186/1687-6180-2014-120

25. Wan L., Sun Y., Sun L., Ning Z., Rodrigues J.J.P.C. Deep Learning Based Autonomous Vehicle Super Resolution DOA Estimation for Safety Driving. IEEE Transactions on Intelligent Transportation Systems. 2021;22(7):4301‒4315. DOI:10.1109/TITS.2020.3009223

26. Dardari D., Chong C.-C., Win M. Threshold-Based Time-of-Arrival Estimators in UWB Dense Multipath Channels. IEEE Transactions on Communications. 2008;56(8):1366‒1378. DOI:10.1109/TCOMM.2008.050551

27. Giorgetti A., Chiani M. Time-of-Arrival Estimation Based on Information Theoretic Criteria. IEEE Transactions on Signal Processing. 2013;61(8):1869‒1879. DOI:10.1109/TSP.2013.2239643

28. Jiang F., Ge Y., Zhu M., Wymeersch H. High-dimensional Channel Estimation for Simultaneous Localization and Communications. Proceedings of the Wireless Communications and Networking Conference, WCNC, 29 March ‒ 01 April 2021, Nanjing, China. IEEE; 2021. p.1‒6. DOI:10.1109/WCNC49053.2021.9417496

29. Fei Z., Li B., Yang S., Xing C., Chen H., Hanzo L. A Survey of Multi-Objective Optimization in Wireless Sensor Networks: Metrics, Algorithms, and Open Problems. IEEE Communications Surveys & Tutorials. 2017;19(1):550‒586. DOI:10.1109/COMST.2016.2610578

30. Koike-Akino T., Wang P., Pajovic M., Sun H., Orlik P.V. Fingerprinting-Based Indoor Localization With Commercial MMWave WiFi: A Deep Learning Approach. IEEE Access. 2020;8:84879‒84892. DOI:10.1109/ACCESS.2020.2991129

31. Vieira J., Leitinger E., Sarajlic M., Li X., Tufvesson F. Deep convolutional neural networks for massive MIMO finger-print-based positioning. Proceedings of the 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, PIMRC, 08‒13 October 2017, Montreal, Canada. IEEE; 2017. p.1‒6. DOI:10.1109/PIMRC.2017.8292280

32. Mateos-Ramos J.M., Song J., Wu Y., Häger C., Keskin M.F., Yajnanarayana V., et al. End-to-End Learning for Integrated Sensing and Communication. Proceedings of the International Conference on Communications, 16‒20 May 2022, Seoul, Republic of Korea. IEEE; 2022. p.1942‒1947. DOI:10.1109/ICC45855.2022.9838308

33. Wu Y., Gustavsson U., Amat A.G.I., Wymeersch H. Low Complexity Joint Impairment Mitigation of I/Q Modulator and PA Using Neural Networks. IEEE Journal on Selected Areas in Communications. 2022;40(1):54‒64. DOI:10.1109/JSAC.2021.3126024

34. Alzahed A.M., Mikki S.M., Antar Y.M.M. Nonlinear Mutual Coupling Compensation Operator Design Using a Novel Electromagnetic Machine Learning Paradigm. IEEE Antennas and Wireless Propagation Letters. 2019;18(5):861‒865. DOI:10.1109/LAWP.2019.2903787

35. Wu Y., Song J., Häger C., Gustavsson U., Graell i Amat A., Wymeersch H. Symbol-Based Over-the-Air Digital Predistortion Using Reinforcement Learning. Proceedings of the International Conference on Communications, 16‒20 May 2022, Seoul, Republic of Korea. IEEE; 2022. p.2615‒2620. DOI:10.1109/ICC45855.2022.9839091

36. Kase Y., Nishimura T., Ohgane T., Ogawa Y., Kitayama D., Kishiyama Y. DOA Estimation of Two Targets with Deep Learning. Proceedings of the 15th Workshop on Positioning, Navigation and Communications, WPNC, 25‒26 October 2018, Bremen, Germany. 2018. p.1‒5. DOI:10.1109/WPNC.2018.8555814

37. Barthelme A., Utschick W. A Machine Learning Approach to DoA Estimation and Model Order Selection for Antenna Arrays With Subarray Sampling. IEEE Transactions on Signal Processing. 2021;69:3075‒3087. DOI:10.1109/TSP.2021.3081047

38. Dvorecki N., Bar-Shalom O., Banin L., Amizur Y. A machine learning approach for Wi-Fi RTT ranging. Proceedings of the International Technical Meeting of the Institute of Navigation, 28–31 January 2019, Reston, USA. 2019. p.435–444. DOI:10.33012/2019.16702

39. Wymeersch H., Marano S., Gifford W.M., Win M.Z. A Machine Learning Approach to Ranging Error Mitigation for UWB Localization. IEEE Transactions on Communications. 2012;60(6):1719‒1728. DOI:10.1109/TCOMM.2012.042712.110035

40. Jiang C., Shen J., Chen S., Chen Y., Liu D., Bo Y. UWB NLOS/LOS Classification Using Deep Learning Method. IEEE Communications Letters. 2020;24(10):2226‒2230. DOI:10.1109/LCOMM.2020.2999904

41. Guo X., Li L., Ansari N., Liao B. Knowledge Aided Adaptive Localization via Global Fusion Profile. IEEE Internet of Things Journal. 2018;5(2):1081‒1089. DOI:10.1109/JIOT.2017.2787594

42. Burghal D., Ravi A.T., Rao V., Alghafis A.A., Molisch A.F. A comprehensive survey of machine learning based localization with wireless signals. arXiv:2012.11171. 2020. DOI:10.48550/arXiv.2012.11171

43. Studer C., Medjkouh S., Gonultaş E., Goldstein T., Tirkkonen O. Channel Charting: Locating Users within the Radio Environment Using Channel State Information. IEEE Access. 2018;6:47682‒47698. DOI:10.1109/ACCESS.2018.2866979

44. Fokin G., Vladyko A. The Vehicles Positioning in Ultra-Dense 5G/V2X Radio Access Networks Using the Extended Kalman Filter. Proceedings of Telecommunication Universities. 2020;6(4):45‒59. (in Russ.) DOI:10.31854/1813-324X-2020-6-4-45-59. EDN:PYHUMZ

45. Fokin G., Vladyko A. Vehicles Positioning with the Fusion of Time of Arrival, Angle of Arrival and Inertial Measurements in the Extended Kalman Filter. Proceedings of Telecommunication Universities. 2021;7(2):51‒67. (in Russ.) DOI:10.31854/1813-324X-2021-7-2-51-67. EDN:AIEESO

46. Kireev A., Fokin G. Accuracy Evaluation of Local Positioning by Radiomap Building and Inertial Navigation System. Proceedings of Telecommunication Universities. 2017;3(4):54‒62. (in Russ.) EDN:YMIHOI

47. Gustafsson F. Particle filter theory and practice with positioning applications. IEEE Aerospace and Electronic Systems Magazine. 2010;25(7):53‒82. DOI:10.1109/MAES.2010.5546308

48. Durrant-Whyte H., Bailey T. Simultaneous localization and mapping: part I. IEEE Robotics & Automation Magazine. 2006;13(2):99‒110. DOI:10.1109/MRA.2006.1638022

49. Bailey T., Durrant-Whyte H. Simultaneous localization and mapping (SLAM): part II. IEEE Robotics & Automation Magazine. 2006;13(3):108‒117. DOI:10.1109/MRA.2006.1678144

50. Yassin A., Nasser Y., Al-Dubai A.Y., Awad M. MOSAIC: Simultaneous Localization and Environment Mapping Using mmWave Without A-Priori Knowledge. IEEE Access. 2018;6:68932‒68947. DOI:10.1109/ACCESS.2018.2879436

51. Barneto C.B., Riihonen T., Turunen M., Koivisto M., Talvitie J., Valkama M. Radio-based Sensing and Indoor Mapping with Millimeter-Wave 5G NR Signals. Proceedings of the International Conference on Localization and GNSS, ICL-GNSS, 02‒04 June 2020, Tampere, Finland. 2020. p.1‒5. DOI:10.1109/ICL-GNSS49876.2020.9115568

52. Fokin G.A. Beam alignment procedures for 5G NR devices. Elektrosvyaz. 2022;2:26‒31. (in Russ.) DOI:10.34832/ELSV.2022.27.2.003. EDN:GWPZQH

53. Dvornikov S.V., Fokin G.A., Al-Odhari A.Kh., Fedorenko I.V. Assessing the influence of PRS LTE signal properties on positioning accuracy. Voprosy radioelektroniki. Seriya: Tekhnika televideniya. 2017;4:94‒103. (in Russ.) EDN:YQWNLJ

54. Fokin G. Model of 5G NR Precision Metro Network Positioning Technology. Part 1. Configuration of PRS Signals. Proceedings of Telecommunication Universities. 2022;8(2):48‒63. (in Russ.) DOI:10.31854/1813-324X-2022-8-2-48-63. EDN:OEXILA

55. Fokin G.A. Model of 5G NR Precision Metro Network Positioning Technology. Part 2. PRS Signal Processing. Proceedings of Telecommunication Universities. 2022;8(3):80‒99. (in Russ.) DOI:10.31854/1813-324X-2022-8-3-80-99. EDN:BRJHYG

56. Dvornikov S.V., Fokin G.A., Al-Odhari A.Kh., Fedorenko I.V. Study of the dependence of the value of the geometric factor of reducing accuracy on the topology of receiving points. Voprosy radioelektroniki. Seriya: Tekhnika televideniya. 2018;2:99‒104. (in Russ.) EDN:XRZIXB

57. Lazarev V., Fokin G. Positioning Accuracy Evaluation of Radio Emission Sources Using Time Difference of Arrival and Angle of Arrival Methods. Part 1. Proceedings of Telecommunication Universities. 2019;5(2):88‒100. (in Russ.) DOI:10.31854/ 1813-324X-2019-5-2-88-100. EDN:FFMJWI

58. Fokin G., Lazarev V. Positioning Accuracy Evaluation of Radio Emission Sources Using Time Difference of Arrival and Angle of Arrival Methods. Part 2. 2D-Simulation. Proceedings of Telecommunication Universities. 2019;5(4):65‒78. (in Russ.) DOI:10.31854/1813-324X-2019-5-4-65-78. EDN:RJHISC

59. Fokin G., Lazarev V. Positioning Accuracy Evaluation of Radio Emission Sources Using Time Difference of Arrival and Angle of Arrival Methods. Part 3. 3D-Simulation. Proceedings of Telecommunication Universities. 2020;6(2):87‒102. (in Russ.) DOI:10.31854/1813-324X-2020-6-2-87-102. EDN:FKSYIZ

60. Fokin G.A. 5G network positioning and probabilistic models for assessing its accuracy. T-Comm. 2020;14(12):4‒17. (in Russ.) EDN:DQRXIK

61. Fokin G.A. A Set of Models and Methods for Positioning Devices in Fifth-Generation Networks. D.Sc Thesis. St. Petersburg: The Bonch-Bruevich Saint-Petersburg State University of Telecommunications Publ.; 2021. 499 p. (in Russ.) EDN:PQMSQX

62. Fokin G.A. Methodology for identifying line of sight in radio links of 4th generation mobile communication networks with spatial signal processing. Proceedings of the Radio Research Institute. 2013;3:78‒82. (in Russ.) EDN:RVFDCV

63. Fokin G.A. Simulation modeling of the process of radio wave propagation in radio links of 4th generation mobile communication networks with spatial signal processing. Proceedings of the Radio Research Institute. 2013;3:83‒89. (in Russ.) EDN:RVFDDF

64. Fokin G.A. Positioning procedures in 5G networks. Vestnik sviazy. 2021;11:2‒8. (in Russ.) EDN:DEFMNY

65. Faisal A., Sarieddeen H., Dahrouj H., Al-Naffouri T.Y., Alouini M.-S. Ultramassive MIMO Systems at Terahertz Bands: Prospects and Challenges. IEEE Vehicular Technology Magazine. 2020;15(4):33‒42. DOI:10.1109/MVT.2020.3022998

66. Stratidakis G., Boulogeorgos A.-A.A., Alexiou A. A cooperative localization-aided tracking algorithm for THz wireless systems. Proceedings of the Wireless Communications and Networking Conference, WCNC, 15‒18 April 2019, Marrakesh, Morocco. IEEE; 2019. p.1‒7. DOI:10.1109/WCNC.2019.8885710

67. Chen H., Aghdam S.R., Keskin M.F., Wu Y., Lindberg S., Wolfgang A., et al. MCRB-based Performance Analysis of 6G Localization under Hardware Impairments. Proceedings of the International Conference on Communications Workshops, ICC Workshops, 16‒20 May 2022, Seoul, Republic of Korea. IEEE; 2022. p.115‒120. DOI:10.1109/ICCWorkshops53468.2022.9814598

68. Fokin G.F. Model for searching the topology of range-based local 5G positioning system for a given geometric factor. Radio Engineering and Telecommunication Systems. 2021;4(44):27‒38. (in Russ.) DOI:10.24412/2221-2574-2021-444-27-38. EDN:XHPHAA

69. Fokin G., Kucheryavy A. Deployment of ultra dense network devices in space. Part 1. Models and methods of geometric factor. Telecom IT. 2022;10(3):32–59. (in Russ.) DOI:10.31854/2307-1303-2022-10-3-32-59. EDN:PUMZTF

70. Fokin G., Kucheryavy A.: Deployment of Ultra Dense Network Devices in Space. Part 2. Search Using Geometric Factor. Telecom IT. 2022;10(4):27–37. (in Russ.) DOI:10.31854/2307-1303-2022-10-4-27-37. EDN:YVEMNW

71. Li Y.-N.R., Gao B., Zhang X., Huang K. Beam Management in Millimeter-Wave Communications for 5G and Beyond. IEEE Access. 2020;8:13282‒13293. DOI:10.1109/ACCESS.2019.2963514

72. Alkhateeb A., Nam Y.-H., Rahman M.S., Zhang J., Heath R.W. Initial Beam Association in Millimeter Wave Cellular Systems: Analysis and Design Insights. IEEE Transactions on Wireless Communications. 2017;16(5):2807‒2821. DOI:10.1109/TWC.2017.2666806

73. Qi C., Chen K., Dobre O.A., Li G.Y. Hierarchical Codebook-Based Multiuser Beam Training for Millimeter Wave Massive MIMO. IEEE Transactions on Wireless Communications. 2020;19(12):8142‒8152. DOI:10.1109/TWC.2020.3019523

74. Hu A., He J. Position-Aided Beam Learning for Initial Access in mmWave MIMO Cellular Networks. IEEE Systems Journal. 2022;16(1):1103‒1113. DOI:10.1109/JSYST.2020.3027757

75. Fokin G. Location Aware Beamforming in Millimeter-Wave Band Ultra-Dense Radio Access Networks. Part 1. Model of Two Links. Proceedings of Telecommunication Universities. 2023;9(4):44‒63. (in Russ.) DOI:10.31854/1813-324X-2023-9-4-44-63. EDN:DIEAKU

76. Fokin G. Location Aware Beamforming in Millimeter-Wave Band Ultra-Dense Radio Access Networks. Part 2. Model of a Set of Radio Links. Proceedings of Telecommunication Universities. 2023;9(5):43‒64. (in Russ.) DOI:10.31854/1813-324X-2023-9-5-43-64. EDN:QPZIOK

77. Han C., Chen Y. Propagation Modeling for Wireless Communications in the Terahertz Band. IEEE Communications Magazine. 2018;56(6):96‒101. DOI:10.1109/MCOM.2018.1700898

78. Garcia N., Wymeersch H., Slock D.T.M. Optimal Precoders for Tracking the AoD and AoA of a mmWave Path. IEEE Transactions on Signal Processing. 2018;66(21):5718‒5729. DOI:10.1109/TSP.2018.2870368

79. Zhou B., Liu A., Lau V. Successive Localization and Beamforming in 5G mmWave MIMO Communication Systems. IEEE Transactions on Signal Processing. 2019;67(6):1620‒1635. DOI:10.1109/TSP.2019.2894789

80. Björnson E., Wymeersch H., Matthiesen B., Popovski P., Sanguinetti L., de Carvalho E. Reconfigurable Intelligent Surfaces: A signal processing perspective with wireless applications. IEEE Signal Processing Magazine. 2022;39(2):135‒158. DOI:10.1109/MSP.2021.3130549

81. Fokin G.A., Kucheryavy A.E., Gorbacheva L.S. Software Module for Studying the Dependence of the Accuracy of Positioning and Orientation of Devices in Space on the Dimension of the Antenna Array at the Base Station in Ultra-Dense Networks of the Millimeter and Terahertz Range. Patent RU no. 2023682152, 12.10.2023. (in Russ.) EDN:NIDIYO

82. Fokin G.A., Volgushev D.B. Models of spatial selection in beamforming based on positioning in ultra-dense millimeter-wave radio access networks. Computer Research and Modeling. 2024;16(1):195‒216. DOI:10.20537/2076-7633-2024-16-1-195-216. EDN:ENQMBZ


Review

For citations:


Fokin G.A. A Set of Models for Device Positioning in Sixth Generation Networks. Part 2. Review of Algorithms and Accuracy Assessment. Proceedings of Telecommunication Universities. 2024;10(5):50-78. (In Russ.) https://doi.org/10.31854/1813-324X-2024-10-5-62-90. EDN: DUMKWF

Views: 162


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)