Preview

Proceedings of Telecommunication Universities

Advanced search

Application of EM-Algorithm for Approximation of Correlated Traffic Probabilities Density by Hyperexponents

https://doi.org/10.31854/1813-324X-2021-7-4-10-17

Abstract

An accurate assessment of the quality of service parameters in modern information communication networks is a very important task. This paper proposes the use of hyperexponential distributions to solve the problem of approxi-mating an arbitrary probability density in the G/G/1 system for the case when the approximation by a system of the type H2/H2/1 is assumed. To determine the parameters of the probability density of the hyperexponential distribu-tion, it is proposed to use EM- algorithm that provides fairly simple use cases for uncorrelated flows. In this paper, we propose a variant of the EM algorithm implementation for determining the parameters of the hyperexponential distribution in the presence of correlation properties of the analyzed flow.

About the Authors

M. Buranova
Povolzhskiy State University of Telecommunications and Informatics
Russian Federation

Samara, 443010, Russian Federation



I Kartashevskiy
Povolzhskiy State University of Telecommunications and Informatics
Russian Federation

Samara, 443010, Russian Federation



References

1. Kleinrock L. Queueing Systems. Vol. I. Theory. John Wiley & Sons; 1975. 432 p.

2. Sheluhin O.I., Tenyakshev A.M., Osin A.V. Fractal Processes in Telecommunications. Moscow: Radiotehnika Publ.; 2003. 480 p. (in Russ.)

3. Buranova M.A. Research of statistical characteristics of the self-similar telecommunication traffic. Infokommunikacionnie tehnologii. 2012;10(4):35‒40. (in Russ.)

4. Kartashevskiy V., Kireeva N., Buranova M., Chupakhina L. Study of queuing system G/G/1 with an arbitrary distribution of time parameter system. Proceedings of the 2nd International Scientific-Practical Conference Problems of Infocommunications Science and Technology, PIC S&T, 13‒15 October 2015, Kharkiv, Ukraine. IEEE; 2015. DOI:10.1109/INFOCOMMST.2015.7357297

5. Kartashevskiy V., Buranova M. Analysis of Packet Jitter in Multiservice Network // Proceedings of the 5th International Scientific-Practical Conference Problems of Infocommunications Science and Technology, PIC S&T, 9‒12 October 2018, Kharkiv, Ukraine. IEEE; 2018. p.797‒802. DOI:10.1109/INFOCOMMST.2018.8632085

6. Buranova M.A., Kartashevskiy V.G., Latypov R.T. Estimation of jitter in the G/M/1 system based on the use of hyperexponential distributions. Infokommunikacionnie tehnologii. 2020;18(1):13‒20. (in Russ.) DOI:10.18469/ikt.2020.18.1.02

7. Kartashevskiy I., Buranova M. Calculation of Packet Jitter for Correlated Traffic. Proceedings of the 19th International Conference on Next Generation Wired/Wireless Networking, NEW2AN 2019, and Proceedings of the 12th Conference on Internet of Things and Smart Spaces, ruSMART 2019, 26‒28 August 2019, St. Petersburg, Russia. Lecture Notes in Computer Science. Computer Communication Networks and Telecommunications. vol.11660. p.610‒620. Cham: Springer; 2019. DOI:10.1007/978-3-030-30859-9_53

8. Vishnevskii V.M., Dudin A.N. Queueing Systems with Correlated Arrival Flows and Their Applications to Modeling Telecommunication Networks. Automation and Remote Control. 2017;78(8):1361–1403. DOI:10.1134/S000511791708001X

9. Balcioĝlu B., Jagerman D.L., Altiok T. Approximate mean waiting time in a GI/D/1 queue with autocorrelated times to failures. IIE Transactions. 2007;39(10):985‒996. DOI:10.1080/07408170701275343

10. Buzov A.L., Bukashkin S.A. Special Radio Communication. Development and Modernization of Equipment and Facilities. Moscow: Radiotekhnika Publ.; 2017. 448 p. (in Russ.)

11. Balcıoglu B., Jagerman D.L., Altıok T. Merging and splitting autocorrelated arrival processes and impact on queueing performance. Performance Evaluation. 2008;65(9):653‒669. DOI:10.1016/j.peva.2008.02.003

12. Keilson J., Machihara F. Hyperexponential waiting time structure in hyperexponential "H" _"N" 〖"/H" 〗_"K" /1 system. Journal of the Operation Society of Japan. 1985;28(3):242‒250.

13. Feldmann A., Whitt W. Fitting Mixtures of Exponentials to Long-Tail Distributions to Analyze Network Performance Models. Performance Evaluation. 1998;31(3-4):245‒279. DOI:10.1016/S0166-5316(97)00003-5

14. Buranova M., Ergasheva D., Kartashevskiy V. Using the EM-algorithm to approximate the Distribution of a Mixture by Hyperexponents. Proceedings of the International Conference on Engineering and Telecommunication, EnT, 20‒21 November 2019, Dolgoprudny, Russia. IEEE; 2019. DOI:10.1109/EnT47717.2019.9030551

15. Baird S.R. Estimating mixtures of exponential distributions using maximum likelihood and the EM algorithm to improve simulation of telecommunication networks. University of British Columbia; 2002. Available from: https://open.library.ubc.ca/collections/ubctheses/831/items/1.0090805 [Accessed 18th October 2021]

16. Korolyov V.Yu. The EM-Algorithm, its Modifications, and Their Application to the Problem of Separating Mixtures of Probability Distributions. Theoretical Review. Moscow: Institute of Informatics Problems of the Russian Academy of Sciences Publ.; 2007. 94 p. (in Russ.)

17. Voroncov K.V. Mathematical Teaching Methods on Precedents. (in Russ.) Available from: http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf [Accessed 18th October 2021]

18. Ip E.H. A Stochastic EM Estimator in the Presence of Missing Data: Theory and Practice. PhD Dissertation. Stanford University; 1994. 127 p.

19. Kullback S., Leibler R.A. On information and sufficiency. The Annals of Mathematical Statistics. 1951;22:79‒86.

20. Bykov V.V. Digital Modeling in Statistical Radio Engineering. Moscow: Soviet radio Publ.; 1971. 328 p. (in Russ.)

21. Kartashevskiy I.V., Saprykin A.V. Waiting time analysis for the request in general queuing system. T-Comm. 2018;12(2):4‒10. (in Russ.) DOI:10.24411/2072-8735-2018-10024


Review

For citations:


Buranova M., Kartashevskiy I. Application of EM-Algorithm for Approximation of Correlated Traffic Probabilities Density by Hyperexponents. Proceedings of Telecommunication Universities. 2021;7(4):10-17. (In Russ.) https://doi.org/10.31854/1813-324X-2021-7-4-10-17

Views: 569


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)