Accuracy Evaluation of Local Positioning by Radiomap Building and Inertial Navigation System
Abstract
Article is devoted to the proposed method for constructing radiomaps of received Wi-Fi signal levels and inertial navigation signals from the built-in sensors of microelectromechanical devices. Experimental estimation of the positioning accuracy of the mobile device indoors using radio levels of the received levels and built-in inertial navigation systems is performed. The experiment was conducted in the expanded Wi-Fi network of SPbGUT and showed the possibility of increasing the positioning accuracy by 15 % in case of combining Wi-Fi signal and inertial navigation in comparison with the known method of radiomap building.
About the Authors
A. V. KireevRussian Federation
G. A. Fokin
Russian Federation
References
1. Sivers M., Fokin G., Dmitriev P., Kireev A. Indoor Positioning in WiFi and NanoLOC Networks // Lecture Notes. Comp. Sciences. 2016. Vol. 9870. PP. 465–476.
2. Woodman O.J. An Introduction to Inertial Navigation. Rep. № UCAM-CL-TR-696. University of Cambridge. Computer Laboratory. 2007.
3. Jimenez A.R., Seco F., Prieto C., Guevara J. A Comparison of Pedestrian Dead-Reckoning Algorithms Using a Low-Cost MEMS IMU. Intelligent Signal Processing. IEEE. 2009. PP. 37–42.
4. Marquardt, D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters // SIAM Journal Applied Math. 1963. Vol. 11. PP. 431–441.
5. InvenSense’s 6-axis Family of Motion Sensors. URL: https://www.invensense.com/products/motion-tracking/6-axis/
6. Matlab mobile. URL: https://www.mathworks.com/products/matlab-mobile.html
7. MATLAB Support Package for Apple iOS Sensors. URL: https://www.mathworks.com/videos/matlab-mobile-overview
8. Gonzalez R., Mahulea C., Kloetzer M. A Matlab-based Interactive Simulator for Teaching Mobile Robotics // Proc. IEEE Int. Conf. on Automation Science and Engineering. 2015. PP. 310–315.
9. Zhongyu G., et al. A Comparison of ZUPT Estimation Methods for Inertial Survey Systems // Journal of Chinese Inertial Technology. 1995. Vol. 2. PP. 24–29.
10. Liu Y., et al. Step Length Estimation Based on D-ZUPT for Pedestrian Dead-Reckoning System // Electronics Letters. 2016. Vol. 52. Iss. 11. PP. 923–924.
11. Julier S.J., Uhlmann J.K. A New Extension of the Kalman Filter to Nonlinear Systems // Proc. Int. Symp. Aerospace/Defense Sensing, Simul. and Controls. 1997. Vol. 3. Iss. PP. 182–193.
12. Grewal M.S. Kalman filtering. International Encyclopedia of Statistical Science. Springer, Berlin, Heidelberg. 2011. PP. 705–708.
13. Haykin S.S., et al. Kalman Filtering and Neural Networks. New York: Wiley, 2001. P. 304.
14. Ahmadi H., Bouallegue R. Exploiting Machine Learning Strategies and RSSI for Localization in Wireless Sensor Networks: A Survey // Proc. 13th International Wireless Communications and Mobile Computing Conference (IWCMC). 2017. PP. 1150–1154.
15. Sivers M., Fokin G., Dmitriev P., Kireev A. Wi-Fi Based Indoor Positioning System Using Inertial Measurements // Lecture Notes. Comp. Sciences. 2017. Vol. 10531. PP. 734–744.
16. Krakiwsky E.J., Harris C.B., Wong R.V.C. A Kalman Filter for Integrating Dead Reckoning, Map Matching and GPS Positioning // Proc. Position Location and Navigation Symposium. Record. Navigation into the 21st Century (PLANS'88). 1988. PP. 9–46.
17. Song Y., Grizzle J.W. The Extended Kalman Filter as a Local Asymptotic Observer for Nonlinear Discrete-Time Systems // Proc. American Control Conference. 1992. PP. 3365–3369.
18. Киреев А.В., Федоренко И.В., Фокин Г.А. Оценка точности позиционирования объекта с помощью границы Крамера-Рао // Труды учебных заведений связи. 2017. Т. 3. №. 2. С. 77–83.
Review
For citations:
Kireev A.V., Fokin G.A. Accuracy Evaluation of Local Positioning by Radiomap Building and Inertial Navigation System. Proceedings of Telecommunication Universities. 2017;3(4):54-62. (In Russ.)