Технологические основы получения механически стабильных одномодовых микроструктурированных световодов с предельно низким затуханием сигнала
Аннотация
Исследовано влияние двух технологических подходов к получению из поликапиллярной сборки кварцевого одномодового микроструктурированного световода с сердцевиной диаметром 35 мкм, предназначенного для работы в условиях многократного изгиба, на величину потерь направляемого по нему излучения и механическую прочность. Установлено, что для достижения наилучших показателей указанных характеристик предпочтительно использовать одностадийный процесс («сборка – волокно») взамен более распространенного двухстадийного («сборка – прототип – волокно»). При этом затухание сигнала составляет 2-3 дБ/км на длине волны λ = 1550 нм, а прочность на растяжение – около 5,5 ГПа, что сопоставимо с аналогичными параметрами одномодовых световодов специального применения, выполненных из сплошных оптических сред.
Об авторах
Ю. А. ГатчинРоссия
В. В. Демидов
Россия
К. В. Дукельский
Россия
П. А. Злобин
Россия
А. С. Матросова
Россия
Список литературы
1. Nielsen M.D., Folkenberg J.R., Mortensen N.A. Single-Mode Photonic Crystal Fiber with an Effective Area of 600 μm2 and Low Bending Loss // Electron. Lett. 2003. Vol. 39. No. 25. PP. 1802–1803.
2. Nielsen M.D., Mortensen N.A., Albertsen M., Folkenberg J.R., Bjarklev A., Bonacinni D. Predicting Macrobending Loss for Large-Mode Area Photonic Crystal Fibers // Opt. Express. 2004. Vol. 12. No. 8. PP. 1775–1779.
3. Агрузов П.М., Дукельский К.В., Комаров А.В., Тер-Нерсесянц Е.В., Хохлов А.В., Шевандин В.С. Разработка микроструктурированных световодов с большой сердцевиной и исследование их оптических свойств // Оптический журнал. 2010. Т. 77. № 1. С. 77–81.
4. Агрузов П.М., Дукельский К.В., Ильичев И.В., Козлов А.С., Шамрай А.В., Шевандин В.С. Исследование волноводных свойств маломодовых микроструктурированных волокон с большой сердцевиной // Квантовая электроника. 2010. Т. 40. № 3. С. 254–258.
5. Гатчин Ю.А., Дукельский К.В., Бондаренко И.Б., Садыков А.А., Демидов В.В., Тер-Нерсесянц Е.В. Оптические потери при изгибе одномодового микроструктурированного световода с большой сердцевиной // Научно-технический вестник информационных технологий, механики и оптики. 2015. Т. 15. № 2. С. 246–252.
6. Безбородкин П.В., Быков М.В., Демидов В.В., Дукельский К.В. Микроструктурированные оптические волокна для систем передачи и обработки информации // Труды учебных заведений связи. 2016. Т. 2. № 1. С. 23–27.
7. Демидов В.В. Одномодовые микроструктурированные световоды с круговым расположением пустот для передачи излучения в режиме ограниченной нелинейности // Оптический журнал. 2017. Т. 84. № 8. С. 3–8.
8. Гатчин Ю.А., Демидов В.В., Дукельский К.В., Тер-Нерсесянц Е.В. Квазиодномодовые световоды с увеличенным размером сердцевины на основе микроструктур негексагонального типа // Труды учебных заведений связи. 2017. Т. 3. № 3. С. 37–42.
9. Minkovich V.P., Kir'yanov A.V., Sotsky A.B., Sotskaya L.I. Large-Mode-Area Holey Fibers with a Few Air Channels in Cladding: Modeling and Experimental Investigation of the Modal Properties // J. Opt. Soc. Am. B. 2004. Vol. 21. No. 6. PP. 1161–1169.
10. Minkovich V.P., Kir'yanov A.V., Calixto Carrera S.A., Sotsky A.B., Sotskaya L.I. Modeling, Fabrication, and Characterization of Large-Mode-Area Photonic Crystal Fibers With Low Bending Loss // Proc. SPIE. 2005. Vol. 5776. PP. 402–408.
11. Napierala M., Nasilowski T., Beres-Pawlik E., Berghmans F., Wojcik J., Thienpont H. Extremely Large-Mode-Area Photonic Crystal Fibre with Low Bending Loss // Opt. Express. 2010. Vol. 18. No. 15. PP. 15408–15418.
12. Napierala M., Nasilowski T., Beres-Pawlik E., Mergo P., Berghmans F., Thienpont H. Large-Mode-Area Photonic Crystal Fiber with Double Lattice Constant Structure and Low Bending Loss // Opt. Express. 2011. Vol. 19. No. 23. PP. 22628–22636.
13. Vaca-Pereira M., Minkovich V.P., Calixto S. Fabrication and Investigation of Large-Mode-Area Photonic Crystal Fibers // Rev. Mex. Fis. 2013. Vol. 59. No. 4. PP. 317–321.
14. Демидов В.В., Дукельский К.В., Тер-Нерсесянц Е.В., Шевандин В.С. Микроструктурированные одномодовые световоды на основе явления дифференциального модового затухания // Оптический журнал. 2012. Т. 79. № 1. С. 52–57.
15. Демидов В.В., Дукельский К.В., Тер-Нерсесянц Е.В., Шевандин В.С. Исследование одномодового режима работы микроструктурированных световодов с каналами вытекания излучения // Оптический журнал. 2013. Т. 80. № 5. С. 65–70.
16. Kobelke J., Gerth K., Kirchhof J., Schuster K., Moerl K., Aichele C. Mechanical and Optical Behavior of Index Guiding Photonic Crystal Fibers (PCF) // Proc. SPIE. 2004. Vol. 5360. PP. 287–298.
17. Косолапов А.Ф., Семенов С.Л., Денисов А.Н. Механические свойства микроструктурированных световодов на основе высокочистого кварцевого стекла // Неорганические материалы. 2007. Т. 43. № 3. С. 362–367.
18. Sonnenfeld C., Sulejmani S., Geernaert T., Eve S., Gomina M., Makara M., Skorupski K., Mergo P., Berghmans F., Thienpont H. Mechanical Reliability of Microstructured Optical Fibers: A Comparative Study of Tensile and Bending Strength // Proc. SPIE. 2012. Vol. 8426. P. 84260Q.
19. Sonnenfeld C., Sulejmani S., Geernaert T., Eve S., Gomina M., Mergo P., Makara M., Skorupski K., Thienpont H., Berghmans F. Mechanical Strength of Microstructured Optical Fibers // J. Lightwave Technol. 2014. Vol. 32. No. 12. PP. 2193–2201.
20. Zhou J., Tajima K., Kurokawa K., Nakajima K., Sankawa I. High Tensile Strength Photonic Crystal Fiber // Optical Fiber Communication Conf. (Los Angeles, California, USA). 2004. Vol. WI. P. WI2.
21. Chakravarthy S.S., Chiu W.K.S. Strength Prediction of Microstructured Optical Fibers // Proc. SPIE. 2006. Vol. 6193. P. 61930B.
22. Дукельский К.В., Комаров А.В., Тер-Нерсесянц Е.В., Хохлов А.В., Шевандин В.С. Снижение затухания излучения в микроструктурированных световодах из поликапиллярной сборки до 2-3 дБ/км // Сб. трудов VIII Международной конференции «Прикладная оптика – 2008» (Санкт-Петербург, Россия). 2008. Т. 2. С. 253–256.
23. Демидов В.В., Кулеш А.Ю., Пасишник А.С., Тер-Нерсесянц Е.В., Хохлов А.В. Исследование прочностных характеристик кварцевых световодов с микроструктурированной оболочкой в эпоксиакрилатном и металлическом покрытиях // Фотон-Экспресс. 2015. № 6. С. 119–120.
24. Russell P.St.J. Photonic-Crystal Fibers // J. Lightwave Technol. 2006. Vol. 24. No. 12. PP. 4729–4749.
25. Демидов В.В., Дукельский К.В., Шевандин В.С. Модовый состав излучения в микроструктурированных световодах со смещенной сердцевиной // Оптический журнал. 2010. Т. 77. № 6. С. 55–60.
26. Demidov V.V. Large-Core Microstructured Fibers with Asymmetric Cladding Design for Practical Single-Mode Operation // Proc. SPIE. 2012. Vol. 8426. P. 84261H.
27. Demidov V., Ter-Nersesyants E. New Possibilities of Higher-Order Mode Filtering in Large-Mode-Area Photonic Crystal Fibers // Proc. SPIE. 2014. Vol. 9128. P. 91280S.
28. Mortensen N.A. Effective Area of Photonic Crystal Fibers // Opt. Express. 2002. Vol. 10. No. 7. PP. 341–348. 29. URL: https://www.comsol.com
29. Hui R., O'Sullivan M. Fiber Optic Measurement Techniques. Burlington & San Diego (USA): Elsevier, 2009. 672 p.
30. Вейбулл В. Усталостные испытания и анализ их результатов. М.: Машиностроение, 1964. 275 с.
31. Kurkjian C.R., Krause J.T., Matthewson M.J. Strength and Fatigue of Silica Optical Fibers // J. Lightwave Technol. 1989. Vol. 7. No. 9. PP. 1360–1370.
32. Дукельский К.В., Ероньян М.А., Мешковский И.К., Комаров А.В., Кулеш А.Ю., Ромашова Е.И., Тер-Нерсесянц Е.В. Повышение поляризационной устойчивости анизотропных одномодовых кварцевых световодов с эллиптичной напрягающей оболочкой // Оптический журнал. 2016. Т. 83. № 12. С. 92–94.
Рецензия
Для цитирования:
Гатчин Ю.А., Демидов В.В., Дукельский К.В., Злобин П.А., Матросова А.С. Технологические основы получения механически стабильных одномодовых микроструктурированных световодов с предельно низким затуханием сигнала. Труды учебных заведений связи. 2017;3(4):29-35.
For citation:
Gatchin Y., Demidov V., Dukelskii K., Zlobin P., Matrosova A. Basic Technological Methods of Obtaining Mechanically Stable Low-Loss Single-Mode Microstructured Fibers. Proceedings of Telecommunication Universities. 2017;3(4):29-35. (In Russ.)