Preview

Труды учебных заведений связи

Расширенный поиск

Методика многоаспектной оценки и категоризации вредоносных информационных объектов в сети Интернет

https://doi.org/10.31854/1813-324X-2019-5-3-58-65

Аннотация

В условиях быстрого развития информационных технологий возникает задача, связанная с обнаружением источников вредоносной информации в сети Интернет. Для ее решения могут применяться методы машинного обучения как один из наиболее популярных и мощных инструментов, предназначенных для выявления зависимостей между входными (наблюдаемыми) данными и выходными (желаемыми) результатами. В данной статье представлена методика, направленная на многоуровневую обработку входных данных о вредоносных информационных объектах в сети Интернет и обеспечивающая их многоаспектную оценку и категоризацию с использованием методов машинного обучения. Цель исследования заключается в повышении эффективности процесса обнаружения вредоносной информации в сети Интернет на примере задачи классификации веб-страниц.

Об авторах

А. А. Браницкий
Санкт-Петербургский институт информатики и автоматизации Российской академии наук
Россия


И. Б. Саенко
Санкт-Петербургский институт информатики и автоматизации Российской академии наук
Россия


Список литературы

1. Hayes P.J., Andersen P.M., Nirenburg I.B., Schmandt L.M. TCS: a shell for content-based text categorization // Proceedings of the Sixth Conference on Artificial Intelligence Applications (Santa Barbara, USA, 5-9 May 1990). Piscataway, NJ: IEEE, 1990. Vol. 1. PP. 320-326. DOI:10.1109/CAIA.1990.89206

2. Apté C., Damerau F., Weiss S.M. Automated learning of decision rules for text categorization // ACM Transactions on Information Systems (TOIS). 1994. Vol. 12. Iss. 3. PP. 233-251. DOI:10.1145/183422.183423

3. Salton G., Buckley C. Term-weighting approaches in automatic text retrieval // Information Processing & Management. 1988. Vol. 24. Iss. 5. PP. 513-523. DOI:10.1016/0306-4573(88)90021-0

4. Fattah M.A. A Novel Statistical Feature Selection Approach for Text Categorization // Journal of Information Processing Systems. 2017. Vol. 13. Iss. 5. PP. 1397-1409.

5. Lewis D.D., Ringuette M. A Comparison of Two Learning Algorithms for Text Categorization // In: Third Annual Symposium on Document Analysis and Information Retrieval. 1994. PP. 81-93.

6. Joachims T. Text categorization with Support Vector Machines: learning with many relevant features // Proceedings of the 10th European Conference on Machine Learning (ECML, Chemnitz, Germany, 21-23 April 1998). Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence). Berlin, Heidelberg: Springer, 1998. Vol. 1398. PP. 137-142. DOI:10.1007/BFb0026683

7. Johnson R., Zhang T. Effective Use of Word Order for Text Categorization with Convolutional Neural Networks // Proceeding of the Annual Conference of the North American Chapter of the Association for Computational Linguistics "Human Language Technologies" (Denver, USA, 31 May - 5 June 2015). Stroudsburg: Association for Computational Linguistics,2015. PP. 103-112. DOI:10.3115/v1/N15-1011

8. Ghareb A.S., Bakar A.A., Hamdan A.R. Hybrid feature selection based on enhanced genetic algorithm for text categorization // Expert Systems with Applications. 2016. Vol. 49. Iss. C. PP. 31-47. DOI:10.1016/j.eswa.2015.12.004

9. Lorena A.C., De Carvalho A.C., Gama J.M.P. A review on the combination of binary classifiers in multiclass problems // Artificial Intelligence Review. 2008. Vol. 30. Iss. 1-4. DOI:10.1007/s10462-009-9114-9

10. Kotenko I., Chechulin A., Shorov A., Komashinsky D. Analysis and Evaluation of Web Pages Classification Techniques for Inappropriate Content Blocking // Proceeding of the 14th Industrial Conference on Data Mining "Advances in Data Mining. Applications and Theoretical Aspects" (ICDM, St. Petersburg, Russia, 16-20 July 2014). Lecture Notes in Computer Science. Cham: Springer, 2014. Vol. 8557. PP. 39-54. DOI:10.1007/978-3-319-08976-8_4

11. Mikolov T., Chen K., Corrado G., Dean J. Efficient Estimation of Word Representations in Vector Space. 2013. URL: https:// arxiv.org/pdf/1301.3781 (дата обращения 10.04.2019)


Рецензия

Для цитирования:


Браницкий А.А., Саенко И.Б. Методика многоаспектной оценки и категоризации вредоносных информационных объектов в сети Интернет. Труды учебных заведений связи. 2019;5(3):58-65. https://doi.org/10.31854/1813-324X-2019-5-3-58-65

For citation:


Branitskiy A..., Saenko I... The Technique of Multi-aspect Evaluation and Categorization of Malicious Information Objects on the Internet. Proceedings of Telecommunication Universities. 2019;5(3):58-65. (In Russ.) https://doi.org/10.31854/1813-324X-2019-5-3-58-65

Просмотров: 452


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)