Preview

Proceedings of Telecommunication Universities

Advanced search

Experimental Investigation of the Transmission of Multimedia Content for Augmented Reality Applications on the Basis of a Wireless Sensor Network

https://doi.org/10.31854/1813-324X-2019-5-2-76-87

Abstract

The article presents the results of an experimental investigation of the transfer of multimedia content for augmented reality applications based on a wireless sensor network. I EEE 802.15.4 and ZigBee protocol, as well as IEEE 802.11 (WiFi) are considered as a data transmission technology in a wireless sensor network. The choice of these technologies allows the interaction of Internet of Things devices with each other with the possibility of self-organization and delivery of data for augmented reality applications by relaying through intermediate nodes. In the first part of the article, the features of the transmission of voice and images through a network fragment are experimentally identified. During voice transmission, different languages are considered and the quality of perception at the receiving side is determined. In the second part of the article, the features of data transmission through intermediate nodes are experimentally identified for this purpose, full-scale and simulation modeling are used. On the basis of the conducted research and subsequent analysis, the dependences of the network operation parameters on the number of nodes in the network and the number of transitions are presented.

About the Authors

T. D. Dinh
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation


R. .. Kirichek
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation


A. .. Koucheryavy
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation


M. .. Makolkina
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation


References

1. Мухизи С., Мутханна А.С., Киричек Р.В., Кучерявый А.Е. Исследование моделей балансировки нагрузки в программно-конфигурируемых сетях // Электросвязь. 2019. № 1. С. 23-29.

2. Атея А.А., Мутханна А.С., Кучерявый А.Е. Интеллектуальное ядро для сетей связи 5G и тактильного интернета на базе программно-конфигурируемых сетей // Электросвязь. 2019. № 3. С. 34-40.

3. Yastrebova A., Kirichek R., Koucheryavy Y., Borodin A., Koucheryavy A. Future Networks 2030: Architecture and Requirements // Proceedings of the 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT, Moscow, Russia, 5-9 November 2018). Piscataway, NJ: IEEE, 2018. DOI:10.1109/ICUMT.2018.8631208

4. Ateya A.A., Muthanna A., Gudkova I., Abuarqoub A., Vybornova A., Koucheryavy A. Development of Intelligent Core Network for Tactile Internet and Future Smart Systems // Journal of Sensor and Actuator Networks. 2018. Vol. 7. Iss. 1. DOI:10.3390/jsan7010001

5. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks: RFC 6550. March 2012.

6. IEEE Std 802.15.4-2011. IEEE Standard for Local and metropolitan area networks. Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). NY: IEEE, 2011.

7. Кучерявый А.Е., Прокопьев А.В., Кучерявый Е.А. Самоорганизующиеся сети. СПб: Типография «Любавич», 2011. 312 с.

8. Росляков А.В., Ваняшин С.В., Гребешков А.Ю., Самсонов М.Ю. Интернет вещей. Самара: ИУНЛ ПГУТИ, ООО «Издательство Ас Гард», 2014. 340 с.

9. Кучерявый А.Е. Интернет Вещей // Электросвязь. 2013. № 1. С. 21-24.

10. Киричек Р.В., Парамонов А.И., Прокопьев А.В., Кучерявый А.Е. Эволюция исследований в области беспроводных сенсорных сетей // Информационные технологии и телекоммуникации. 2014. № 4. С. 29-41. URL: http://www.sut.ru/doci/nauka/review/4-14.pdf (дата обращения 10.06.2019)

11. Гольдштейн Б.С., Кучерявый А.Е. Сети связи пост-NGN. СПб: БХВ-Петербург, 2013. 160 с.

12. Futahi A., Paramonov A., Koucheryavy A. Wireless sensor networks with temporary cluster head nodes // Proceedings of the 18th International Conference on Advanced Communication Technology (ICACT, Pyeongchang, South Korea, 31 January-3 February 2016). Piscataway, NJ: IEEE, 2016. PP. 283-288. DOI:10.1109/ICACT.2016.7423362

13. Кучерявый А.Е., Владыко А.Г., Киричек Р.В., Парамонов А.И., Прокопьев А.В., Богданов И.А. и др. Летающие сенсорные сети // Электросвязь. 2014. № 9. C. 2-5.

14. ZigBee Alliance (01/2008). ZigBee Specification (Document 053474r17).

15. Рек. МСЭ-R BT.500-13 (01/2012). Методика субъективной оценки качества телевизионных изображений.

16. Rec. ITU-T G.711 (1998; 08/2009). Amendment 1 New Annex A on lossless encoding of PCM frames.

17. Rec. ITU-T Y.1540 (11/2007). Internet protocol data communication service. IP packet transfer and availability performance parameters.

18. Rec. ITU-T Y.1541 (05/2002). Network performance objectives for IP-Based Services.

19. Rec. ITU-T Р.913 (01/2014). Methods for the subjective assessment of video quality, audio quality and audiovisual quality of Internet video and distribution quality television in any environment.

20. Rec. ITU-T P.910 (04/2008). Subjective video quality assessment methods for multimedia applications.

21. Маколкина М.А. Анализ субъективных методов оценки качества IPTV // Информационные технологии моделирования и управления. 2013. № 5(83). С. 492-500.

22. Кучерявый А.Е., Парамонов А.И. Модели трафика для сенсорных сетей в u-России // Электросвязь. 2006. № 6. С. 15-19.


Review

For citations:


Dinh T.D., Kirichek R..., Koucheryavy A..., Makolkina M... Experimental Investigation of the Transmission of Multimedia Content for Augmented Reality Applications on the Basis of a Wireless Sensor Network. Proceedings of Telecommunication Universities. 2019;5(2):76-87. (In Russ.) https://doi.org/10.31854/1813-324X-2019-5-2-76-87

Views: 376


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)