Preview

Proceedings of Telecommunication Universities

Advanced search

Fast Optical Switching: Analysis of Existing Solutions and a New Method Ensuring Signal/Packet Switching in Multi-Service Networks

https://doi.org/10.31854/1813-324X-2025-11-5-97-118

EDN: UMHYVG

Abstract

Beamforming technologies in 5G / 6G and fractional lambda switching are impossible without fast (in times <1 ns) packet switching. Existing microresonator devices and the like are focused on low-photon signals and are not effective on traditional G.703/G.802.3ba fiber-optic lines. Therefore, methods and devices for fast switching of optical packets are relevant.

The purpose of the work: to create a new non-relational method for fast switching of signals / packets in fully
optical networks based on chirp pulses. The scientific task is to develop a multi-port interference wavelength separation device with a small step.

Methods used: numerical modeling in the HFSS package, methods of probability theory.

In the course of solving the scientific problem, an interference pattern was obtained in the working area of the device, a spectrally selective output mirror was designed, and the refractive index gradient was refined.

Novelty: a method of fast optical switching, a two-resonator separation device with a developed output mirror structure and a refined refractive index is proposed.

Practical significance: the device is designed for packet 5G / 6G networks without buffering.

The results of the work are interesting when designing new generations of optical switches.

The practical implementation of the device improves the performance of packet-switched networks.

About the Authors

I. L. Vinogradova
Ufa University of Science and Technology; Ufa State Petroleum Technological University
Russian Federation


A. H. Sultanov
Ufa University of Science and Technology
Russian Federation


E. Yu. Golovina
Institute of Oil Refining and Petrochemistry of FSBEU VO "UGNTU" in Salavat
Russian Federation


A. M. Komissarov
Ufa University of Science and Technology
Russian Federation


P. E. Filatov
Ufa University of Science and Technology
Russian Federation


References

1. Goldstein A.B., Goldstein B.S. MPLS Technology and Protocols. St. Petersburg: BHV-Petersburg Publ.; 2005. 304 p. (in Russ.)

2. Sahinel D., Rommel S., Monroy I.T. Resource Management in Converged Optical and Millimeter Wave Radio Networks: A Review. Applied Sciences. 2022;12(1):221. DOI:10.3390/app12010221. EDN:IAHVFJ

3. Shafi M., Jha R.K., Jain S. 6G: Technology Evolution in Future Wireless Networks. IEEE Access. 2024;12:57548–57573. DOI:10.1109/ACCESS.2024.3385230. EDN:ICZPDX

4. Xue X., Zhang S., Guo B., Ji W., Yin R., Chen B., et al. Optical Switching Data Center Networks: Understanding Techniques and Challenges. arXiv:2302.05298. DOI:10.48550/arXiv.2302.05298

5. Zhao C., Cai Y., Liu A., Zhao M., Hanzo L. Mobile Edge Computing Meets mmWave Communications: Joint Beamforming and Resource Allocation for System Delay Minimization. IEEE Transactions on Wireless Communications. 2020;19(4):2382–2396. DOI:10.1109/twc.2020.2964543. EDN:QXLJHM

6. Roslyakov A., Gerasimov V. Analysis of End-to-End Delay in the Transport Segment of Fronthaul 4G/5G Networks Based on TSN Technology. Proceedings of Telecommunication Universities. 2024;10(1):73–84. (In Russ.) DOI:10.31854/1813-324X-2024-10-1-73-84. EDN:SJWTLO

7. Sato K. Optical switching will innovate intra data center networks [Invited Tutorial]. Journal of Optical Communications and Networking. 2023;16(1):A1–A23. DOI:10.1364/JOCN.495006

8. Miao W., Luo J., Di Lucente S., Dorren H., Calabretta N. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system. Optics Express. 2024;22(3):2465–2472. DOI:10.1364/OE.22.002465

9. Mukherjee B. Optical Communication Networks. Mc.Graw-Hill; 2005. 576 p.

10. Sasikala V., Chitra K. All optical switching and associated technologies: a review. Journal of Optics. 2018;47:307–317. DOI:10.1007/s12596-018-0452-3. EDN:OHBQOC

11. Zhao Y., Qian C., Qiu K., Gao Y., Xu X. Ultrafast optical switching using photonic molecules in photonic crystal waveguides. Optics express. 2015;23(7):9211–9220. DOI:10.1364/OE.23.009211. EDN:UVOCHP

12. Chai Z., Hu X., Wang F., Niu X., Xie J., Gong Q. Ultrafast All‐Optical Switching. Advanced Optical Materials. 2017;5(7):1600665. DOI:10.1002/adom.201600665. EDN:YWBFYN

13. Ono M., Hata M., Tsunekawa M., Nozaki K., Sumikura H., Chiba H., et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics. 2020;14(1):37–43. DOI:10.1038/s41566-019-0547-7. EDN:OYKIDV

14. Rutckaia V., Schilling J. Ultrafast low-energy all-optical switching. Nature Photonics. 2020;14(1):4–6. EDN:DURANK

15. Rehman A.U., Khan Y., Irfan M., Butt M.A., Khonina S.N., Kazanskiy N.L. A Novel Design of Optical Switch Based on Guided Mode Resonances in Dielectric Photonic Crystal Structures. Photonics. 2022;9(8):580. DOI:10.3390/photonics9080580. EDN:UJDEOL

16. Sultanov A.Kh., Vinogradova I.L., Meshkov I.K., Andrianova A.V., Abdrakhmanova G.I., Ishmiyarov A.A., et al. A method for connecting antenna radiators to rof systems using an optical device and calculating its parameters. Computer Optics. 2015;39(5):728–737. (in Russ.) DOI:10.18287/0134-2452-2015-39-5-728-737. EDN:VCCHWZ

17. Agrawal G. P. Nonlinear Fiber Optics. Boston: Academic Press; 2009. 466 p.

18. Vinogradova I.L., Golovina E.U., Gizatulin A.R., Meshkov I.K., Filatov P.E., Komissarov A.M. Method of RoF-network segment control using chirped optical pulses. Proceedings of the Conference on Optical Technologies for Telecommunications, 22–24 November 2023, Kazan, Russian Federation, vol.13168. 2023. p.51–62. DOI:10.1117/12.3026194

19. Vinogradova I.L. Characteristics of a two-resonator Fabry-Perot interferometer. Radio Engineering. 2002;6:33–39. (in Russ.)

20. Abdrakhmanova G.I., Andrianova A.V., Vinogradova I.L., Grakhova E.P., Zainullin A.R., Ishmiyarov A.A., et al. Device for branching and chirping optical signals. Patent RF, no. 163995 U1, 02.08.2016. (in Russ.) EDN:RKEEJZ

21. Skokov I.V. Multibeam interferometers in measuring technology. Moscow: Mashinostroenie Publ.; 1989. 256 p. (in Russ.)

22. Andrianova A.V., Vinogradova I.L., Sultanov A.K., Meshkov I.K., Abdrakhmanova G.I., Grakhova E.P. Approach to obtaining 3D-nanostructured two-phase sitall glass based on intense torsion under high pressure. Computer Optics. 2016;40(4):489–500. (in Russ.) DOI:10.18287/2412-6179-2016-40-4-489-500. EDN:WMIKAH

23. Karpenko G.D., Klimenko A.I. Method of dynamic compensation of drift of constant component of low-frequency sinusoidal. Patent SU, no. 482686 A1, 16.04.1973. (in Russ.) EDN:OVVZIS

24. Zhitnikov V.P., Sherykhalina N.M., Porechny S.S. On one approach to practical evaluation of errors of numerical results. Computing, Telecommunication and Control. 2009;3:105–110. (in Russ.) EDN:KXXBVL

25. Evgrafov A. ANSYS HFSS. Advanced technology for three-dimensional electrodynamics problems solution. Electronics: Science, Technology, Business. 2014;6(138):162–167. (in Russ.) EDN:SQWBDT

26. Kudinova M., Bouwmans G., Vanvincq O., Habert R., Plus S., Bernard R., et al. Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses. APL Photonics. 2021;6:2. DOI:10.1063/5.0028195. EDN:UAKRHQ

27. Khonina S.N., Kazanskiy N.L., Butt M.A. Grayscale Lithography and a Brief Introduction to Other Widely Used Lithographic Methods: A State-of-the-Art Review. Micromachines. 2024;15(11):1321. DOI:10.3390/mi15111321. EDN:OMVMDO

28. Chesnokova M., Nurmukhametov D., Ponomarev R., Agliullin T., Kuznetsov A., Sakhabutdinov A., et al. Microscopic Temperature Sensor Based on End-Face Fiber-Optic Fabry–Perot Interferometer. Photonics. 2024;11(8):712. DOI:10.3390/photon-ics11080712. EDN:NHSVWJ

29. Zhang D., Li Y. A RISC-V 32-bit microprocessor on two-dimensional semiconductor platform. Journal of Semiconductors. 2025;46(8). DOI:10.1088/1674-4926/25050016

30. Saha S., Pal S., Ganguly J., Ghosh M., et al. Exploring optical refractive index change of impurity doped quantum dots driven by white noise. Superlattices and Microstructures. 2015;88:620–633. DOI:10.1016/j.spmi.2015.10.021

31. Baldi M., Ofek Y. Realizing Dynamic Optical Networking. URL: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://staff.polito.it/mario.baldi/publications/ONM2003.pdf [Accessed 08.10.2025]

32. Agrawal D., Baldi M., Corra M., Fontana G., Marchetto G., Nguyen V.T. A Scalable Approach for Supporting Streaming Media: Design, Implementation and Experiments. Proceedings of the 12th IEEE Symposium on Computers and Communications, 01–04 July 2007, Santiago, Portugal. IEEE; 2007. p.211–217. DOI:10.1109/ISCC.2007.4381589

33. Baldi M., Ofek Y. Fractional Lambda Switching Principles of Operation and Performance Issues. Simulation. 2004;80(10):527–544. DOI:10.1177/0037549704046

34. Follett D.R., Sobin D.L. Optical backplane. Patent USA, no. 4870637A, 24.12.1987. https://patents.google.com/patent/US4870637A/en

35. Jorepalli S. Transforming Network Architectures with VMware NSX-T Data Centre: A Deep Dive into Software-Defined Networking for Multi-Cloud Environments. Applied Science and Engineering Journal for Advanced Research. 2025;4(1):7–12. DOI:10.5281/zenodo.14784450

36. Xue X., Calabretta N. Nanosecond optical switching and control system for data center networks. Nature Communications. 2022;13(1):2257. DOI:10.1038/s41467-022-29913-1. EDN:DVCWFP

37. Singh O., Paulus R. A critical review of optical switches. Journal of Optical Communications. 2023;44(1):349–358. DOI:10.1515/joc-2020-0284

38. Lei Y., Li J., Liu Z., Joshi R., Xia Y. Nanosecond Precision Time Synchronization for Optical Data Center Networks. arXiv:2410.17012. 2024.

39. Eremenko V.T., Fisun A.P., Saitov I.A., Mironov A.E., Oreshin A.N., Korolev A.V. Methods and Models of Teletraffic Theory. Orel: Oryol State University named after I.S. Turgenev Publ.; 2019. 244 p. (in Russ.)

40. Bachev A.G., Vakulenko N.N., Zakharov M.K. Mathematical model of a data exchange network with packet switching. Software and Systems. 2010;1:158–161. (in Russ.) EDN:MNKMVL

41. Huang S. Wang M., Liu Y., Liu Z., Cui Y. Iphicles: Tuning Parameters of Data Center Networks with Differentiable Performance Model. Proceedings of the 32nd International Symposium on Quality of Service, IWQoS, 19–21 June 2024, Guangzhou, China. IEEE; 2024. р.1–10. DOI:10.1109/IWQoS61813.2024.10682926

42. Treshchikov V.N., Listvin V.N. DWDM systems. Moscow: Technosfera Publ.; 2021. 420 p. (in Russ.)


Review

For citations:


Vinogradova I.L., Sultanov A.H., Golovina E.Yu., Komissarov A.M., Filatov P.E. Fast Optical Switching: Analysis of Existing Solutions and a New Method Ensuring Signal/Packet Switching in Multi-Service Networks. Proceedings of Telecommunication Universities. 2025;11(5):97-118. (In Russ.) https://doi.org/10.31854/1813-324X-2025-11-5-97-118. EDN: UMHYVG

Views: 11


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)