Research of Video Stream Frame Delay in UAVs FPV-Control Information Exchange Channel of HSTNs Space Segment
https://doi.org/10.31854/1813-324X-2025-11-5-60-73
EDN: GXFZLX
Abstract
In this paper, dependence of applied delay and video stream frame loss values of the FPV video stream on the size of the transmitted frames compressed by a neural network codec when implementing information exchange channels between unmanned aerial vehicles and an external pilot station in the space segment of a hybrid orbital-ground communication network. Satellite information exchange channels built on the basis of the Starlink Low-Earth orbit satellite constellations, as well as the Yamal-402 and Yamal-601 geostationary orbits, are considered. Relevance of the work is based on the necessity to achieve a specified level of quality of FPV control services in satellite communication networks.
Methods used. Application delay and frame loss of the video stream using neural network codecs are measured using the field testing method. Video stream frames are segmented, transmitted via the UDP transport protocol and reconstructed. The probability distribution density of delays is reconstructed using the Rosenblatt-Parzen method with a density estimation function with a Gaussian kernel.
Results. Average transmission delays and frame losses of a video stream (compressed by a neural network codec) via satellite communication systems in low-Earth and geostationary orbits are obtained. Distributions of video stream delay dependencies on the payload size are reconstructed. The nature of the distribution of video stream delays compressed by a neural network codec is found. Novelty of the obtained results lies in the study of the nature of video stream delays when implementing the FPV control service through various space segments of a hybrid orbital-ground communication network using neural network video stream compression codecs.
Practical significance. The results can be used in modeling applied satellite information exchange channels for implementing the FPV control service in order to form an optimal configuration of the neural network codecs used.
Keywords
About the Authors
A. A. BerezkinRussian Federation
R. M. Vivchar
Russian Federation
A. A. Chenskiy
Russian Federation
R. V. Kirichek
Russian Federation
References
1. Lukaev S.L., Emelyanov N.A., Smirnov M.P. To the question of remote sensing by drones in agriculture. Proceedings of the VIth International Scientific and Practical Conference on Scientific, Educational and Applied Aspekts of Production and Processing of Agricultural Products, 15 November 2022, Cheboksary, Russian Federation. Cheboksary: Chuvash State Agrarian University Publ.; 2022. p.632–635. (in Russ.) EDN:IHDGLM
2. Habibullin I.I., Saharova V.V., Sabirov B.M. Use of unmanned aerial vehicles (UAV) in agriculture of the Russian Federation. Proceedings of the All-Russian (National) Scientific and Practical Conference of Young Scientists on Applied Research in Agricultural Engineering, 22 November 2023, Kazan, Russian Federation. Kazan: Kazan State Agrarian University Publ.; 2024. p.263–268. (in Russ.) EDN:VSZMPJ
3. Kunin I.E. Unmanned aerial vehicles in agriculture. Proceedings of the XVth International Youth Forum "Education. Science. Production", 23–24 October 2023, Belgorod, Russian Federation. Belgorod: Belgorod State Technological University named after V.G. Shukhov Publ.; 2023. p.117–121. (in Russ.) EDN:EXZBEG
4. Glizhinskaja E.A. Utilization of unmanned aerial vehicle (drones) in the construction industry. A Collection of Articles by Master's and Postgraduate Students of the Faculty of Civil Engineering. St. Peterburg: Saint Petersburg State University of Architecture and Civil Engineering Publ.; 2024. p.106–112. (in Russ.) EDN:BXIYTL
5. Kudasova A.S., Tyutina A.D., Sokolnikova E.V. The use of unmanned aerial vehicles in construction. Engineering journal of Don. 2021;8(80):31–38. (in Russ.) EDN:ZSBCJR
6. Moiseeva N.A. Methods of structural synthesis of information exchange channels of unmanned aircraft vehicles. Proceedings of the International Youth Conference dedicated to the 90th Anniversary of Yuri Gagarin State Technical University of Saratov on Modern Materials and Technologies, Saratov, Russian Federation, 27–28 May 2020. Saratov: Yuri Gagarin State Technical University of Saratov Publ.; 2020. p.32–34. (in Russ.) EDN:YXRFHY
7. Moiseev D.V., Moiseeva N.A., Chuzhikova-Proskurnina O.D. Implementation of reliable channels of information exchange between an unmanned vehicle and a high-capacity dispatch center. Collection of Scientific Papers on Maritime Strategy and Policy of Russia in the Context of Ensuring National Security and Sustainable Development in the 21st Century, vol.4(25). Sevastopol: Nakhimov Black Sea Higher Naval School Publ.; 2020. p.258–262. (in Russ.) EDN:EYEFHS
8. Moiseev D.V., Moiseeva E.A., Chuzhikova-Proskurnina O.D. Ensuring reliability and high capacity of information exchange channels between unmanned vehicles and dispatch center. Proceedings of the IIIrd International Scientific and Practical Conference on Information Technologies in Education and Agricultural Production, 18 March 2020, Bryansk, Russian Federation. Bryansk: Bryansk State Agrarian University Publ.; 2020. p.309–314. (in Russ.) EDN:FDAYNQ
9. Chao H., Maheshwari A., Sudarsanan V., Tamaskar S., DeLaurentis D.A. UAV Traffic Information Exchange Network. Proceedings of the Aviation Technology, Integration, and Operations Conference, 25–29 June 2018, Atlanta, Georgia. 2018. p.3347. DOI:10.2514/6.2018-3347
10. de Resende H.C., Pinheiro J.F.N., Reiter P., Both C.B., Marquez-Barja J.M. 4G/5G performance of a multi-RAT UAV for medical parcel delivery. Proceedings of the 19th Annual Consumer Communications & Networking Conference, CCNC, 08–11 January 2022, Las Vegas, USA. IEEE; 2022. p.268–271. DOI:10.1109/CCNC49033.2022.9700528
11. Vijayaratnam M., Cagnazzo M., Valenzise G., Trioux A., Kieffer M. Towards Zero-Latency Video Transmission Through Frame Extrapolation. Proceedings of the International Conference on Image Processing, ICIP, 18 October 2022, Bordeaux, France. IEEE; 2022. p.2122–2126. DOI:10.1109/ICIP46576.2022.9897958
12. Bachhuber C., Steinbach E. A system for high precision glass-to-glass delay measurements in video communication. Proceedings of the International Conference on Image Processing, ICIP, 25–28 September 2016, Phoenix, USA. IEEE; 2016. p.2132–2136. DOI:10.1109/ICIP.2016.7532735
13. Bachhuber C., Steinbach E. A System for Precise End-to-End Delay Measurements in Video Communication. arXiv:1510.01134. 2015. DOI:10.48550/arXiv.1510.01134
14. Bachhuber C., Steinbach E., Freundl M., Reisslein M. On the Minimization of Glass-to-Glass and Glass-to-Algorithm Delay in Video Communication. IEEE Transactions on Multimedia. 2017;20(1):238–252. DOI:10.1109/TMM.2017.2726189
15. Kanj H., Trioux A., Cagnazzo M., Coudoux F.X., Corlay P., Kieffer M. Glass-to-Glass Delay Reduction: Encoding Rate Reduc-tion vs. Video Frame Extrapolation. Proceedings of the 25th International Workshop on Multimedia Signal Processing, MMSP, 27–29 September 2023, Poitiers, France. IEEE; 2023. p.1–6. DOI:10.1109/MMSP59012.2023.10337718
16. Bachhuber C., Steinbach E. Are Today's Video Communication Solutions Ready for the Tactile Internet? Proceedings of the Wireless Communications and Networking Conference Workshops, WCNCW, 19–22 March 2017, San Francisco, USA. IEEE; 2017. p.1–6. DOI:10.1109/WCNCW.2017.7919060
17. Kumar R. Autonomous Control of Advanced Multirotor Unmanned Aerial Systems. PhD Thesis. University of Cincinnati; 2022.
18. Ebeid E., Skriver M., Terkildsen K.H., Jensen K., Schultz U.P. A survey of Open-Source UAV flight controllers and flight simulators. Microprocessors and Microsystems. 2018;61:11–20. DOI:10.1016/j.micpro.2018.05.002
19. Al-Bahri M., Yankovsky A., Borodin A., Kirichek R. Testbed for Identify IoT-Devices Based on Digital Object Architecture. Proceedings of the 18th International Conference on Next Generation Wired/Wireless Networking, NEW2AN 2018, and 11th Conference on Internet of Things, Smart Spaces, ruSMART 2018, 27–29 August 2018, St. Petersburg, Russian Federation. Lecture Notes in Computer Science, vol.11118. Cham: Springer; 2018. p.129–137. DOI:10.1007/978-3-030-01168-0_12. EDN:YAPAZN
20. Al-Bahri M., Yankovsky A., Kirichek R., Borodin A. Smart System Based on DOA & IoT for Products Monitoring & Anti-Counterfeiting. Proceedings of the 4th MEC International Conference on Big Data and Smart City, ICBDSC, 15–16 January 2019, Muscat, Oman. IEEE; 2019. DOI:10.1109/ICBDSC.2019.8645610. EDN:TENQWL
21. Loughlin B.D. The PAL color television system. IEEE Transactions on Broadcast and Television Receivers. 1966;12(3): 153–158.
22. Rec. ITU-R BT.470-7 (1970-1974-1986-1994-1995-1998). Conventional Television Systems.
23. Kuidin R.A., Panin D.V., Pavlova U.E., Palov P.V. Analogue and digital FPV. Proceedings of the XXXth International Scientific and Practical Conference “Science. Education. Innovations“, Anapa, Russian Federation, 12 May 2021. Anapa: LLC “Research Center for Economic and Social Processes” in the Southern Federal District, 2021. p.113–116. (in Russ.). EDN:JLXBKT
24. Townsend G.B. Colour performance of the Secam colour television system. Proceedings of the Institution of Electrical Engineers. 1963;110(8):1341–1349. DOI:10.1049/piee.1963.0190
25. Suzuki Y., Gai T., Yamakawa M., Sugiura H. NTSC/PAL/SECAM digital video decoder with high-precision resamplers. IEEE Transactions on Consumer Electronics. 2005;51(1):287–294. DOI:10.1109/TCE.2005.1405734
26. Singh S., Lee H.W., Tran T.X., Zhou Y., Sichitiu M.L., Güvenç I. FPV Video Adaptation for UAV Collision Avoidance. IEEE Open Journal of the Communications Society. 2021;2:2095–2110. DOI:10.1109/ojcoms.2021.3106274. EDN:ADCYJS
27. Rec. ITU-T H.264 (03/2003). Advanced Video Coding for Generic Audio-Visual Services.
28. ISO/IEC 23008 2:2013 (12/2013). Information technology. High efficiency coding and media delivery in heterogeneous environments. Part 2. High Efficiency Video Coding.
29. Rec. ITU-T H.266 (09/2023). Versatile Video Coding.
30. Bankoski J., Koleszar J., Quillio L., Salonen J., Wilkins P., Xu Y. VP8 Data Format and Decoding Guide. RFC 6386. 2011. DOI:10.17487/rfc6386
31. Grange A., de Rivaz P., Hunt J. VP9 Bitstream & Decoding Process Specification – v0.6. Google, Inc.; 2016.
32. de Rivaz P., Haughton J. AV1 Bitstream & Decoding Process Specification. The Alliance for Open Media; 2018.
33. Berezkin A.A., Chenskiy A.A., Kirichek R.V., Zaharov A.A. Research of latent video stream compression methods for FPV control of UAVs. Electrosvyaz. 2024;6:46–56. (in Russ.) DOI:10.34832/ELSV.2024.55.6.014. EDN:FWBEQE
34. Berezkin A.A., Chenskiy A.A., Kirichek R.V., Zaharov A.A. Research of latent space quantization methods of variational autoencoder for FPV video stream frames. Part I. Electrosvyaz. 2024;6:10–16. (in Russ.) DOI:10.34832/ELSV.2024.55.6.011. EDN:GPNYSJ
35. Berezkin A.A., Chenskiy A.A., Vivchar R.M. Kirichek R.V. Research of latent space quantization methods of variational autoencoder for FPV video stream frames. Part II. Electrosvyaz. 2024;7:26–35. (in Russ.) DOI:10.34832/ELSV.2024.56.7.005. EDN:NZSTKD
36. Berezkin A.A., Chenskiy A.A., Kirichek R.V., Zaharov A.A. Research of neural network codec configurations for adaptive FPV video stream frame compression system when controlling unmanned systems. Part I. Methodology. Electrosvyaz. 2024;9:28–37. (in Russ.) DOI:10.34832/ELSV.2024.58.9.004. EDN:MWXFXN
37. Berezkin A.A., Chenskiy A.A., Kirichek R.V., Zaharov A.A. Research of neural network codec configurations for adaptive fpv video stream frame compression system when controlling unmanned system. Part II. Experiment. Electrosvyaz. 2024;10: 59–69. (in Russ.) DOI:10.34832/ELSV.2024.59.10.009. EDN:IWGJLY
38. Berezkin A.A., Chenskiy A.A., Kirichek R.V. Masking encrypted FPV video stream when controlling UAVs. Part I. Models and methodology. Electrosvyaz. 2024;12-2:32–45. (in Russ.) DOI:10.34832/ELSV.2024.61.12.005. EDN:PDIJJE
39. Berezkin A.A., Chenskiy A.A., Kirichek R.V. Masking encrypted FPV video stream when controlling UAVs. Part II: Models training and experiments. Electrosvyaz. 2025;5:34–41. (in Russ.) DOI:10.34832/ELSV.2025.67.5.005. EDN:HBJWPW
40. Jia Z., Li B., Li J., Xie W., Qi L., Li H., et al. Towards Practical Real-Time Neural Video Compression. arXiv:2502.20762. 2025. DOI:10.48550/arXiv.2502.20762
41. Kirichek R., Pham V.D., Kolechkin A., Al-Bahri M., Paramonov A. Transfer of Multimedia Data via LoRa. Proceedings of the 17th International Conference on Next Generation Wired/Wireless Networking (NEW2AN 2017), and 3d Conference on Internet of Things, Smart Spaces (ruSMART 2017), and Third International Workshop on Nano-scale Computing and Communications, NsCC 2017, 28–30 August 2017, St. Petersburg, Russian Federation. Lecture Notes in Computer Science, vol.1053. Cham: Springer; 2017. p.708–720. DOI:10.1007/978-3-319-67380-6_67. EDN:ZHIASL
42. Berezkin A.A., Vivchar R.M., Chenskiy A.A., Kirichek R.V. Research of Video Stream Frame Delay in UAV FPV-Control Information Exchange Channel in Hybrid Communication Network Terrestrial Segment. Proceedings of Telecommunication Universities. 2025;11(1):7–17. (in Russ.) DOI:10.31854/1813-324X-2025-11-1-7-17. EDN:FTRJGU
43. Jamalipour A. Low Earth Orbital Satellites for Personal Communication Networks. Artech House, Inc.; 1997. 273 p.
44. Xia Z., Liu L., Hu C., Bu X. Inter-Satellite Link Channel Characterization of Laser Communication Systems. Proceedings of the 11th International Conference on Information, Communication and Networks, ICICN, 17–20 August 2023, Xi'an, China. IEEE; 2023. p.426–431. DOI:10.1109/ICICN59530.2023.10393617
45. Dong C., Li X. Design of a Data Distribution System for High Earth Orbit Satellites. Proceedings of the 8th International Conference on Electrical, Mechanical and Computer Engineering, ICEMCE, 25–27 October 2024, Xi'an, China. IEEE; 2024. p.1615–1619. DOI:10.1109/ICEMCE64157.2024.10862589
46. Roberts L.D. A lost Connection: Geostationary Satellite Networks and the International Telecommunication Union. Berkeley Technology Law Journal. 2000;15(3):1095 DOI:10.15779/Z38DQ1J
47. Gritsenko A.A. HTS class sattelite systems. Connect. 2017;4:120. (in Russ.)
48. Li J., Li H., Lai Z., Wu Q., Liu Y., Zhang Q., et al. SatGuard: Concealing Endless and Bursty Packet Losses in LEO Satellite Networks for Delay-Sensitive Web Applications. Proceedings of the ACM Web Conference 2024, 13–17 May 2024, Singapore, Singapore. New York: Association for Computing Machinery; 2024. p.3053–3063. DOI:10.1145/3589334.3645639
49. Michel F., Trevisan M., Giordano D., Bonaventure O. A first look at Starlink performance. Proceedings of the 22nd ACM Internet Measurement Conference, 25–27 October 2022, Nice, France. New York: Association for Computing Machinery; 2022. p.130–136. DOI:10.1145/3517745.356141
50. Mihalev A.V., Beletskij A.B., Lebedev V.P., Syrenova T.E., Hahinov V.V. Optical effects of the Proton-M launch vehicle flight with Yamal-601 satellite in the far zone from the launch site. Kosmicheskie issledovaniya. 2022;60(2);125–133. (in Russ.) DOI:10.31857/S0023420622020054. EDN:RNIXIC
51. Berger V.W., Zhou Y.Y. Kolmogorov–Smirnov Test: Overview. Wiley StatsRef: Statistics Reference Online. John Wiley & Sons; 2014. DOI:10.1002/9781118445112.stat06558
52. Gupta A.K., Nadarajah S. Handbook of Beta Distribution and Its Applications. Boca Raton: CRC press; 2004. 600 p. DOI:10.1201/9781482276596
Review
For citations:
Berezkin A.A., Vivchar R.M., Chenskiy A.A., Kirichek R.V. Research of Video Stream Frame Delay in UAVs FPV-Control Information Exchange Channel of HSTNs Space Segment. Proceedings of Telecommunication Universities. 2025;11(5):60-73. (In Russ.) https://doi.org/10.31854/1813-324X-2025-11-5-60-73. EDN: GXFZLX


























