Ensuring the Stability of a Radio Communication System in Radio Jamming Conditions
https://doi.org/10.31854/1813-324X-2025-11-4-87-96
EDN: OELOOW
Abstract
Relevance. At the current stage, methods for improving the reconnaissance and interference immunity of HF radio communication systems are based on packet data transmission technologies in the adaptive pseudorandom frequency hopping mode. To support frequency hopping, service functions should be organized, such as route probing, transmission of operating frequencies to radio stations, and synchronization of radio stations, which usually use the frequency hopping range. Using the frequency resource of the radio communication systems for service purposes limits the possibility of exchanging operational information and increases the probability of suppression. The article presents a solution to the urgent problem of ensuring the stability of the radio communication systems through the use of meteor radio channels for frequency provision of radio stations and their synchronization and collecting current data on the interference situation at corresponding radio stations.
The purpose of the work is to increase the stability of the radio communication systems operation through the use of a promising ionospheric-wave and frequency dispatch service equipped with meteor radio communication tools. The methods used: imitation modeling of the conflict of complex systems: radio communication systems and electronic warfare systems.
The result consists in achieving high noise immunity of the radio communication systems.
The novelty consists in the use of meteor radio communication facilities for frequency provision and synchronization of radio stations.
Practical significance is ensuring the continuity of the radio communication systems operation under conditions of active radio suppression.
About the Authors
S. V. RusinRussian Federation
V. A. Dolgikh
Russian Federation
V. D. Pashkevich
Russian Federation
S. V. Volvenko
Russian Federation
V. A. Minko
Russian Federation
R. A. Dasaev
Russian Federation
References
1. Panin R.S., Putilin A.N., Khvostunov Yu.S. Use of frequency resource by decameter communication system in pseudo-random frequency tuning mode. Means of Communication Equipment. 2020;3(151):2–14. (in Russ.) EDN:JOZDQI
2. Panin R.S. Solution of the problem of selecting parameters of multiple access to anisotropic radio channels of decameter range. I-methods. 2022;14(4):6. (in Russ.) EDN:UOJZRX
3. Khvostunov Yu.S. Implementation of network synchronization in an automated radio communication network of decameter range. Means of Communication Equipment. 2020;2(150):63-70. (in Russ.) EDN:XZETEM
4. Golovin O.V. Systems and Devices of Short-Wave Radio Communication. Moscow: Goryachaya Liniya – Telecom Publ.; 2006. 598 p. (in Russ.) EDN:QMPNFX
5. Forsyth P.A., Vogan E.L., Hansen D.R., Hines C.D. The Principles of JANET-A Meteor-Burst Communication System. Proceedings of the IRE. 1957;45(12):1642–1657. DOI:10.1109/JRPROC.1957.278296
6. Koziratsky A.Yu., Parinov M.L. Probabilistic model of conflict of complex systems. Proceedings of the VI International Scientific and Methodological Conference on Computer Science: Problems, Methodology, Technologies. Voronezh: Voronezh State University Publ.; 2006. p.315–319. (in Russ.)
7. Sirota A.A. Computer Modeling and Evaluation of the Effectiveness of Complex Systems. Moscow: Tekhnosfera Publ.; 2006. 279 p. (in Russ.)
8. Bogovik A.V., Ignatov V.V. The Effectiveness of Military Communication Systems and Methods for Its Evaluation. St. Petersburg: Military Signal Academy Publ.; 2006. (in Russ.)
9. Koziratsky Yu.L., Koziratsky A.Yu., Grevtsev A.I., Parinov M.L., Kuschev S.S. Computer modeling of conflict in complex systems. Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies. 2008;2:13–17. (in Russ.) EDN:KHNZDB
10. Saati T.L. Mathematical models of arms control and disarmament: Application of mathematical structures in politics (Operations Research Society of America. Publications in operations research). Wiley, 1968.
11. Koziratskiy Ju.L., Podluzhnyi V.I., Parinov M.L. Methodical Approach to Constructing Probabilistic Models of Complex Conflict Systems. Vestnik of Military Institute of Radioelectronics. 2005;3:4–16. (in Russ.)
12. Kapralov D.D., Kirik D.I. Stochastic Model of Meteor-Burst Radio Channel. Proceedings of Telecommunication Universities. 2018;4(3):54–64. (in Russ.) DOI:10.31854/1813-324X-2018-4-3-54-64. EDN:YAVGWD
13. Komarovich V.F., Sosunov V.N. Random Radio Interference and Reliability of HF Communications. Moscow: Svyaz Publ.; 1977. 136 p. (in Russ.)
14. Philonin O.V., Belokonov I.V. Space Research Opportunities for Reconstruction of Electronic Components Ionosphere by Means of Utilizations of Navigation Satellites. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2014;16(4):47–53. (in Russ.) EDN:SZGQSV
15. Smirnov V.M., Smirnova E.V. Ionospheric support module based on GPS/GLONASS systems. Journal of Radio Electronics. 2010;6:5. (in Russ.) EDN:MSPQPD
16. Anishin M.M., Radio L.P. Software Package for Forecast Characteristics HF Radio Link «Trassa-2019» (Part 2). Radio Communication Technology. 2020;1(44):40–51. (in Russ.) DOI:10.33286/2075-8693-2020-44-40-51. EDN:ENZHXO
17. Myaskovsky G.M. Industrial Radio Communication Systems. Moscow: Svyaz Publ.; 1980. 216 p. (in Russ.)
18. Rec. ITU-R P.533-14 (08/2019). Method for predicting the performance of HF links. Series P. Radiowave Propagation.
19. Latorre V.R. Utilization of the Phase Stability of Meteor Trails for Accurate Synchronization. Proceedings of the International Conference Res. IEEE; 1965. pt.2. p.121–129.
20. Epictetov L.A., Menakreev R.R., Sidorov V.V. Application of Meteor Burst Equipment for High Precision Comparisons of Time and Frequency Standards. Proceedings of the 7th European Frequency and Time Forum, EFTF, Neuchatel, Switzerland, 16–18 March 1993. Swiss Foundation for Research in Microtechnology; 1993. p.413–416.
21. Karpov A.V., Sulimov A.I., Sherstyukov O.N. Modern Scientific and Applied Problems of Meteor Scatter Radio Propagation. Proceedings of the Conference on Propagation of Radio Waves, 1–6 July 2019, Kazan, Russian Federation, vol.1. Kazan: Kazan Federal University Publ.; 2019. p.20–28. (in Russ.) EDN:GQBCDR
22. Miroshnikov V.I., Budko P.A., Zhukov G.A. The main directions of development of meteor communication. H&ES Re-search. 2019;11(4):30–47. (in Russ.) DOI:10.24411/2409-5419-2018-10277. EDN:PADANA
23. Crook A.G., Sytsma D. Meteor burst telemetry in hydrologic data acquisition. Proceedings of the Vancouver Workshop on Remote Data Transmission, 9–22 August 1987, vol.178. LAHS Publ.; 1989. p.9–17.
24. Asiri T., Karpov A.V., Kodirov A.I., Latipov D., Popov V.I., Rubtsov L.N., et al. Lateral propagation of radio waves on short meteor radio paths. Radiophysics and Quantum Electronics. 1989;32(7):912–913. (in Russ.)
25. Zakharov V.N., Krivitsky B.Kh., Mamaev N.S., Manovtsev A.P., Matov V.I., Nikolaev O.A., et al. Handbook on Radio-Electronic Systems, vol.1. Moscow: Energy Publ.; 1979. 352 p. (in Russ.)
26. Miller S.L., Milstein L.B. A Comparison of protocols for a meteor-bust channel based on a time-varying channel model. IEEE Transactions on Communications. 1989;37(1):18–30. DOI:10.1109/26.21649
27. Volvenko S.V., Makarov S.B., Zavyalov S.V., Khachayants M.B. The choice of the threshold SNR at the reception of signals in the meteoric communication channel with the use of half-duplex protocol with retransmission on request. Radioengineering. 2016;12:83–93. (in Russ.) EDN:XRLFGH
28. Ivanchenko Yu.S., Orlova L.G. Method for increasing the data transmission rate in a packet meteor communication network. Patent RF, no. 2461125, 28.06.2010. (in Russ.) EDN:QXZBNT
29. Smith D.K., Donich T.G., Dickerson B.V., Leader R.E. Meteor scatter burst communication system. Patent US, no. 4277845, 20.02.1981.
30. Mui S.Y. A comparison of fixed and variable-rate signaling for meteor burst communications. IEEE Transactions on Communications. 1994;42(234):211–215. DOI:10.1109/TCOMM.1994.577010
Review
For citations:
Rusin S.V., Dolgikh V.A., Pashkevich V.D., Volvenko S.V., Minko V.A., Dasaev R.A. Ensuring the Stability of a Radio Communication System in Radio Jamming Conditions. Proceedings of Telecommunication Universities. 2025;11(4):87-96. https://doi.org/10.31854/1813-324X-2025-11-4-87-96. EDN: OELOOW