Preview

Proceedings of Telecommunication Universities

Advanced search
Cover Image

Research and Development of Signal Processing Algorithms in MIMO Systems Using Space-Time Codes

https://doi.org/10.31854/1813-324X-2025-11-3-59-70

EDN: XTSWWS

Abstract

Abstract: With the advancement of digital radio communication systems, there is a growing demand for enhanced spectral efficiency in mobile and hybrid radio systems and networks. To meet these requirements, Multiple-Input Multiple-Output (MIMO) technology is extensively employed in modern radio communication systems. The use of multiple transmitting and receiving antennas in MIMO systems imposes stringent performance requirements on signal processing algorithms. Consequently, the development of fast and efficient signal processing algorithms is a task of significant relevance.

The aim of this study is to analyze and optimize space-time coding techniques and signal processing algorithms for MIMO systems. The research focuses on developing an algorithm that ensures the required level of performance while significantly reducing computational complexity.

Methods. This study utilizes numerical simulation methods within the MATLAB environment to compare the performance of various signal processing algorithms in MIMO systems over a fading channel.

Results. In addressing the research objectives, the principles of constructing space-time code matrices for different coding methods were examined, and coherent signal demodulation techniques were analyzed. Based on this analysis, an algorithm with reduced computational complexity is proposed. A key element of scientific novelty of this work lies in the development and application of a novel approach to approximate the inverse channel matrix, which is a computationally expensive operation, particularly for high-dimensional matrices in coherent demodulation algorithms. This new approach is based on the combined use of the iterative Jacobi method and the Neumann series expansion for the approximation of the matrix inverse.

Practical significance. The developed algorithm can be utilized in the design of MIMO systems with a large number of transmitting and receiving antennas, as well as in the application of non-orthogonal coding schemes to increase the coding rate. In such systems, conventional demodulation methods require significant computational resources for inverting the channel matrix, which limits real-world performance. The proposed algorithm mitigates this bottleneck, enabling more practical implementations.

About the Authors

K. K. Fam
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation


E. I. Glushankov
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation


References

1. Vargauzin V.A., Tsikin I.A. Methods for Improving Energy and Spectral Efficiency of Digital Radio Communication. St. Petersburg: BHV-Peterburg Publ.; 2013. 352 p. (in Russ.) EDN:SDSMUX

2. Bykhovskii M. Hyperphase Modulation ‒ the Optimal Method of Message Transmission in the Gaussian Communication Channels. Moscow: Tekhnosfera Publ.; 2018. 310 p. (in Russ.) EDN:IPVDXR

3. Lukyanchik Ya.I., Levenets A.V., Chye E.U. Model of a Data Transmission System with Feedback and Adaptive Coding Selection Based on Channel State. Information Technologies of the 21st Century. 2015:506–513. (in Russ.) EDN:UDRXTH

4. Kulbida V.A. Methods of Error-Resistant Coding and Decoding for Building Communication Systems with Adaptation to Channel State. Tekhnika radiosvyazi. 2006;11:40–51. (in Russ.) EDN:LTWRRX

5. Kamentsev O.K. Algorithms for Processing Spectrally Efficient Signals with Frequency Multiplexing. Ph.D. Thesis. Voronezh State University Publ.; 2024. 131 p. (in Russ.) EDN:JSKECY

6. Maltsev A.A., Rubtsov A.E. Investigation of Performance of OFDM Wireless Communication Systems with Adaptive Subcarrier Puncturing. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2007;5:43–49. (in Russ.) EDN:JXCIBV

7. Bakulin M.G., Kreindelin V.B., Pankratov D.Yu. Application of MIMO Technology in Modern Wireless Communication Systems of Different Generations. T-Comm. 2021;15(4):4–12. (in Russ.) DOI:10.36724/2072-8735-2021-15-4-4-12. EDN:FPZEGW

8. Pankratov D.Yu., Pakhomova A.V. Application of MIMO Technology to Improve Physical Layer Characteristics of Wi-Fi Wireless Networks. H&ES Research. 2024;16(3):55–61. (in Russ.) DOI:10.36724/2409-5419-2024-16-3-55-61. EDN:UEAIEZ

9. Petrov V.P., Yakushev I.Yu. Modern Technologies in MIMO Systems. The Herald of the Siberian State University of Telecommunications and Information Science. 2019;2:94–108. (in Russ.) EDN:HKRBBT

10. Komarov M.I., Pankratov D.Yu., Stepanova A.G., Chumanov A.E. Noise Immunity and Computational Complexity of Demodulation Algorithms for MIMO Systems with Different Numbers of Antennas. Digital Signal Processing and Its Applications. 2022;12(1):39–47. (in Russ.) EDN:ENKGOL

11. Kreindelin V.B., Smirnov A.E., Ben Rezheb T.B.K. Efficiency of Signal Processing Methods in High-Order MU-MIMO Systems. T-Comm. 2016;10(12):24–30. (in Russ.) EDN:XKNRRJ

12. Alamouti S.M. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications. 1998;16(8):1451–1458. DOI:10.1109/49.730453

13. Tarokh V., Jafarkhani H., Calderbank R. Space-time block coding for wireless communications: performance results. IEEE Journal on Selected Areas in Communications. 1999;17(3):451–460. DOI:10.1109/49.753730

14. Ganesan G., Stoica P. Space-time block codes: A maximum SNR approach. IEEE Transactions on Information Theory. 2001;47(4):1650–1656. DOI:10.1109/18.923754

15. Arti M.K. OSTBC Transmission in Large MIMO Systems. IEEE Communications Letters. 2016;20(11):2308–2311. DOI:10.1109/LCOMM.2016.2597229

16. Ozbek B., Ruyet D., Bellanger M. Non-Orthogonal Space-Time Block Coding Design for 3 Transmit Antennas. 2003. URL: https://easytp.cnam.fr/leruyet/Publications/gretsi2003.pdf [Accessed 25.06.2025]

17. Dama Y., Abd-Alhameed R., Ghazaany T., Zhu S. A new approach for OSTBC and QOSTBC. International Journal of Computer Applications. 2013;67(6):45–48. DOI:10.5120/11403-6719

18. Wu C., Yang S., Xiao Y., Xiao M. Quasi-Orthogonal Space-Time Block Coded Spatial Modulation. IEEE Transactions on Communications. 2022;70(12):7872–7885. DOI:10.1109/TCOMM.2022.3216805. EDN:JFXAGD

19. Seema S., Arti M.K., Reddy B. Data Detection in Large MIMO System with Reduced Computational Complexity for QOSTBC Transmission. Proceedings of the 3rd International Conference on Advancement in Electronics & Communication Engineering, AECE, 23‒24 November 2023, Ghaziabad, India. IEEE; 2023. p.46–50. DOI:10.1109/AECE59614.2023.10428602

20. Jung Y.-H., Nam S.H., Chung J., Kim Y., Ko K., Chae C.-B., et al. Enhancement of Rate 2 STC with Antenna Grouping. 2004. URL: https://www.ieee802.org/16/tge/contrib/C80216e-04_555.pdf [Accessed 25.06.2025]

21. Chae C.-B., Roh W., Yun S.-R., Ko K., Jeong H., Oh J.T., et al. Enhancement of STC with Antenna Grouping. 2004. URL: https://ieee802.org/16/tge/contrib/C80216e-04_554r4.pdf [Accessed 25.06.2025]

22. Djemamar Y., Ibnyaich S., Zeroual A. Space-Time Block Coding Techniques for MIMO 2×2 System using Walsh-Hadamard Codes. Journal of International Conference on Electrical and Information Technologies. 2022:1–7. DOI:10.6109/ jicce.2022.20.1.1

23. Mecklenbräuker C.F., Rupp M. Generalized Alamouti Codes for Trading Quality of Service Against Data Rate in MIMO UMTS. EURASIP Journal on Advances in Signal Processing. 2004:662–675. DOI:10.1155/S1110865704310061

24. Bykhovskii M.A. Space-Time Coding In Miso Systems. Elektrosvyaz. 2020;1:67–75. (in Russ.) DOI:10.34832/ELSV. 2020.2.1.010. EDN:LARTEL

25. Smirnov A.E. Reducing the Computational Complexity of Detection Algorithms in Multi-Antenna Systems Using Fast Matrix Multiplication Algorithms. Fundamentalnye problemy radioelektronnogo priborostroeniya. 2015;15(5):267–270. (in Russ.) EDN:VOUGPX

26. Pankratov D.Yu., Stepanova A.G. Computational Complexity of Demodulation Algorithms for MIMO Systems with a Large Number of Antennas. Digital Signal Processing and Its Applications. 2021;11(1):11–20. (in Russ.) EDN:QTSOZP

27. Khrapov P.V., Volkov N.S. Comparative analysis of Jacobi and Gauss-Seidel iterative methods. International Journal of Open Information Technologies. 2024;12(2):23–34. DOI:10.48550/arXiv.2307.09809. EDN:INYTHE

28. Björck Å. Numerical Methods in Matrix Computations. Cham: Springer; 2015. 551 p. DOI:10.1007/978-3-319-05089-8

29. Cho Y.S., Kim J., Yang W.Y., Kang C.G. MIMO-OFDM Wireless Communications with MATLAB. John Wiley & Sons; 2010. 439 p. DOI:10.1002/9780470825631. EDN:SRQIDH


Review

For citations:


Fam K.K., Glushankov E.I. Research and Development of Signal Processing Algorithms in MIMO Systems Using Space-Time Codes. Proceedings of Telecommunication Universities. 2025;11(3):59-70. (In Russ.) https://doi.org/10.31854/1813-324X-2025-11-3-59-70. EDN: XTSWWS

Views: 29


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)