Preview

Труды учебных заведений связи

Расширенный поиск
Изображение на обложке

Гибридный метод локального контрастирования изображений с нейросетевой регулировкой параметров

https://doi.org/10.31854/1813-324X-2025-11-2-7-19

EDN: TKAPTM

Аннотация

Актуальность. Современные методы обработки изображений направлены на повышение их визуального качества, в частности, на адаптивное локальное контрастирование. Для достижения высокой эффективности контрастирования ранее применялись классические алгоритмы, однако они не учитывали глобальный контекст сцены и могли приводить к усилению шумовых искажений. В связи с этим в данной работе предложен гибридный метод адаптивного локального контрастирования изображений с использованием нейросетевой регулировки параметров.

Целью статьи является разработка алгоритма, обеспечивающего оптимальное усиление контраста при минимизации шумовых артефактов и искажений, повышение контрастности и точности обнаружения объектов в режиме реального времени.

Сущность решения: адаптивная настройка начальных параметров локального контрастирования с помощью сверточной нейронной сети, учитывающей яркостные и текстурные особенности. Сверточная нейронная сеть динамически подбирает параметры обработки и размеры локальных областей для объектов и фона, улучшая видимость деталей и подавляя артефакты обработки (ореолы, блочность). Метод реализован в виде программно-аппаратного комплекса для компьютерного зрения, обработки аэрофотоснимков, видеонаблюдения и поиска пострадавших при катаклизмах.

Научная новизна работы заключается в разработке алгоритма, позволяющего автоматически регулировать параметры контрастирования на основе анализа глобального и локального контекста сцены с использованием искусственного интеллекта.

Теоретическая значимость работы состоит в гибридном подходе к адаптивной обработке изображений, основанном на применении сверточной нейронной сети для управления параметрами локального контрастирования. Управление параметрами осуществляется на основе анализа текстурных и частотных характеристик изображения, автоматическую адаптацию под которые производит нейронная сеть. Методика обеспечивает адаптацию к нестационарным условиям наблюдения и, как следствие, повышает устойчивость алгоритма к сложным условиям.

Практическая значимость разработанного алгоритма определяется реализацией повышения контраста объектов изображений, полученных в видимом и инфракрасном диапазонах спектра и достоверностью их распознавания с использованием искусственного интеллекта.

Об авторе

И. Ю. Грицкевич
Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича
Россия

аспирант кафедры телевидения и метрологии Санкт-Петербургского государственного университета телекоммуникаций им. проф. М.А. Бонч-Бруевича



Список литературы

1. Jobson D.J., Rahman Z., Woodell G.A. Properties and performance of a center/surround retinex // IEEE Transactions on Image Processing. 1997. Vol. 6. Iss. 3. PP. 451‒462. DOI:10.1109/83.557356

2. Chen Y.S., Wang Y.C., Kao M.H., Chuang Y.Y. Deep Photo Enhancer: Unpaired Learning for Image Enhancement from Photographs with GANs // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR, Salt Lake City, USA, 18‒23 June 2018). IEEE, 2018. DOI:10.1109/CVPR.2018.00660

3. Paris S., Hasinoff S.W., Kautz J. Local Laplacian filtering: edge-aware image processing with a Laplacian pyramid // Proceedings of the Conference on Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH '11, Vancouver, Canada, 7‒11 August 2011). New York: Association for Computing Machinery, 2011. URL: https://people.csail.mit.edu/sparis/publi/2011/siggraph/Paris_11_Local_Laplacian_Filters_lowres.pdf (Accessed 25.04.2025)

4. Грицкевич И.Ю., Гоголь А.А. Алгоритм безэталонной оценки качества изображений // Труды учебных заведений связи. 2024. Т. 10. № 2. С. 16‒23. DOI:10.31854/1813-324X-2024-10-2-16-23. EDN:TTPABW

5. Rec. ITU-R BT.500-11. Methodology for subjective assessment of the quality of television pictures. ITU-T. 2002. (23)

6. Шелепин Ю.Е. Введение в нейроиконику. СПб.: Троицкий мост, 2017. 352 с. EDN:YNTJRJ

7. Kim Y.T. Contrast enhancement using brightness preserving bi-histogram equalization // IEEE Transactions on Consumer Electronics. 1997. Vol. 43. Iss. 1. DOI:10.1109/30.580378

8. Rahman Z., Jobson D.J., Woodell G.A. Multi-scale retinex for color image enhancement // Proceedings of the 3rd International Conference on Image Processing (Lausanne, Switzerland, 19 September 1996). IEEE, 1996. DOI:10.1109/ICIP.1996.560995

9. Ying Z., Li G., Gao W. A Bio-Inspired Multi-Exposure Fusion Framework for Low-light Image Enhancement // arXiv preprint arXiv:1711.00591. 2017. DOI:10.48550/arXiv.1711.00591

10. Vala H.J., Baxi A. A review on Otsu image segmentation algorithm // International Journal of Advanced Research in Computer Engineering & Technology. 2013. Vol. 2. Iss. 2. PP. 387‒389.

11. Cybenko G. Approximation by superpositions of a sigmoidal function // Mathematics of Control, Signals and Systems. 1989. Vol. 2. PP. 303–314. DOI:10.1007/bf02551274. EDN:OKSIPR

12. Wang R., Zhang Q., Fu C.W., Shen X., Zheng W.S., Jia J. Underexposed Photo Enhancement Using Deep Illumination Estimation // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR, Long Beach, USA, 15‒20 June 2019). IEEE, 2019. DOI:10.1109/CVPR.2019.00701 (13)

13. Han Y., Ye J.C. Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT // IEEE Transactions on Medical Imaging. 2018. Vol. 37. Iss. 6. PP. 1418‒1429. DOI:10.1109/TMI.2018.2823768

14. What is Histogram Equalization and how it works? // Great Learning. 2024. URL: https://www.mygreatlearning.com/blog/histogram-equalization-explained (Accessed 25.04.2025)

15. Liu J., Li D., Yuan C., Luo B., Wu G. A low-light image enhancement method with brightness balance and detail preservation // PLoS One. 2022. Vol. 17. Iss. 5. P. e0262478. DOI:10.1371/journal.pone.0262478. EDN:DFDSOY

16. Pizer S.M., Amburn E.P., Austin J.D., Cromartie R., Geselowitz A., Greer T., et al. Adaptive histogram equalization and its variations // Computer Vision, Graphics, and Image Processing. 1987. Vol. 39. Iss. 3. PP. 355‒368. DOI:10.1016/S0734-189X(87)80186-X

17. Kaur M., Kaur J., Kaur J. Survey of Contrast Enhancement Techniques based on Histogram Equalization // International Journal of Advanced Computer Science and Applications. 2011. Vol. 2. Iss. 7. DOI:10.14569/IJACSA.2011.020721

18. Zuiderveld K. VIII.5. ‒ Contrast Limited Adaptive Histogram Equalization // In: Heckbert P.S. (ed.) Graphics Gems IV. Academic Press, 1994. PP. 474‒485. DOI:10.1016/B978-0-12-336156-1.50061-6

19. Lore K.G., Akintayo A., Sarkar S. LLNet: A Deep Autoencoder Approach to Natural Low-light Image Enhancement // Pattern Recognition. 2017. Vol. 61. PP. 650‒662. DOI:10.1016/j.patcog.2016.06.008

20. Wei C., Wang W., Yang W., Liu J. Deep Retinex Decomposition for Low-Light Enhancement. 2018. URL: http://39.96.165.147/Pub%20Files/2018/chen_bmvc18.pdf (Accessed 25.04.2025)

21. Liu X., Ma Y., Shi Z., Chen J. GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing // Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV, Seoul, South Korea, 27 October ‒ 02 November 2019). IEEE, 2019. DOI:10.1109/ICCV.2019.00741

22. Guo C., Li C., Guo J., Loy C.C., Hou J., Kwong S., Cong R. Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR, Seattle, USA, 13‒19 June 2020). IEEE, 2020. DOI:10.1109/CVPR42600.2020.00185

23. Hossain F., Alsharif M.R. Image Enhancement Based on Logarithmic Transform Coefficient and Adaptive Histogram Equalization // Proceedings of the International Conference on Convergence Information Technology (ICCIT 2007, Gwangju, South Korea, 21‒23 November 2007). IEEE, 2007. DOI:10.1109/ICCIT.2007.4420457

24. Stark J.A. Adaptive image contrast enhancement using generalizations of histogram equalization // IEEE Transactions on Image Processing. 2000. Vol. 9. Iss. 5. PP. 889‒896. DOI:10.1109/83.841534

25. Потапова А.А. Новейшие методы обработки изображений. М.: ФИЗМАТЛИТ, 2008. 496 с.


Рецензия

Для цитирования:


Грицкевич И.Ю. Гибридный метод локального контрастирования изображений с нейросетевой регулировкой параметров. Труды учебных заведений связи. 2025;11(2):7-19. https://doi.org/10.31854/1813-324X-2025-11-2-7-19. EDN: TKAPTM

For citation:


Gritskevich I.Yu. A Hybrid Approach to Local Contrast Enhancement Using Adaptive Neural Network Parameter Control. Proceedings of Telecommunication Universities. 2025;11(2):7-19. (In Russ.) https://doi.org/10.31854/1813-324X-2025-11-2-7-19. EDN: TKAPTM

Просмотров: 138


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)