Preview

Proceedings of Telecommunication Universities

Advanced search
Cover Image

Research of Video Stream Frame Delay in UAV FPV-Control Information Exchange Channel in Hybrid Communication Network Terrestrial Segment

https://doi.org/10.31854/1813-324X-2025-11-1-7-17

EDN: FTRJGU

Abstract

This research considers the dependence of the delay and loss of video stream frames compressed by neural network codec developed on the basis of neural network variation auto-encoder on the size of transmitted frames in the realization of information exchange channels between unmanned aviation system and external pilot station in the ground segment of hybrid orbital-terrestrial communication network taking into account the distance between them when using 3G and LTE data transmission technologies are used. The Relevance of the research is conditioned by the necessity to achieve a given level of service quality for FPV control of UAVs in communication networks.  Methods used. In this research, the applied transmission delays and frame loss of FPV control video stream when using neural network codecs are measured by in-situ experiment. The applied delays and losses take into account segmentation, packet recovery and transmission of multiple UDP packets for each payload. Additionally, the Rosenblatt-Parzen method reconstructs the probability density distributions of delay probabilities. Results. Estimates of average values of transmission delay and frame loss of video stream (compressed by neural network codec) when using 3G and LTE data transmission technologies taking into account different distances between the unmanned system and the external pilot's station are obtained. The distributions of video stream delay dependencies on the payload size are reconstructed. The character of video stream delay distribution formed by neural network codec is found. The Novelty of the obtained results lies in the study of the nature of delays and frame losses of the FPV-control service video stream transmitted through mobile communication networks at the application layer of the OSI model when using neural network codecs. Practical significance. The results can be used in modeling of information exchange channels for FPV control in order to form the optimal configuration of the used neural network codecs.

About the Authors

A. A. Berezkin
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation


R. M. Vivchar
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation


A. A. Chenskiy
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation


R. V. Kirichek
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation


References

1. Prosvirina N. Analysis and Prospects for the Development of Unmanned Aircraft. Moscow Economic Journal. 2021;10:560–575. (in Russ.) DOI:10.24411/2413-046X-2021-10619. EDN:PPWXEF

2. Meschaninova E.G., Nikolukina V.O. Prospects for the Use of UAVs in the Implementation of the Land Supervision. Economy and Ecology of Territorial Entities. 2018;2(3):122–128. (in Russ.) DOI:10.23947/2413-1474-2018-2-3-122-128. EDN:UVLPBE

3. Kurnosenko D.V. Prospects for the Use of Unmanned Aerial Vehicles (UAVs) in Forest Fire Suppression. Molodye uchenye v reshenii aktual'nyh problem bezopasnosti. 2023;280–281. (in Russ.) EDN:RULHAI

4. Chmelev V.S., Kalyuka V.I., Dmitrenko M.E. Overview of Control Systems Unmanned Aerial Apparatus for General Use. Proceedings of the Scientific and Practical Conference "Technologies. Innovations. Communications", 19 April 2021, Saint Petersburg, Russian Federation. Saint Petersburg: Military Telecommunication Academy Publ.; 2022. p.279–286. (in Russ.) EDN:KZXWEH

5. Goncherova N.P., Primachuk V.S. Unmanned Aerial Vehicles in the Modern World. Brief overview and development prospects. Simbol of Science. 2023;6-2:12–14. (in Russ.) EDN:WXXJBD

6. ITU-T H.264. Advanced Video Coding for Generic Audio-Visual Services. 2003.

7. ISO/IEC 23008-2. High Efficiency Video Coding. 2013.

8. Mousavi A., Patel A.B., Baraniuk R.G. A deep learning approach to structured signal recovery. Proceedings of the 53rd Annual Allerton Conference on Communication, Control, and COMPUTING, Allerton, 29 September ‒ 02 October 2015, Monticello, USA. IEEE; 2016. p.1336‒1343. DOI:10.1109/ALLERTON.2015.7447163

9. Li Y., Mandt S. Disentangled Sequential Autoencoder. arXiv:1803.02991v2. 2018. DOI:10.48550/arXiv.1803.02991

10. Berezkin A.A., Chenskiy A.A., Kirichek R.V., Zaharov A.A. Research of Neural Network Codec Configurations for Adaptive FPV Video Stream Frame Compression System When Controlling Unmanned Systems. Part I. Methodology. El-ektrosvjaz’. 2024;9:42–51. (in Russ.) DOI:10.34832/ELSV.2024.58.9.004. EDN:MWXFXN

11. Berezkin A.A., Chenskiy A.A., Kirichek R.V., Zaharov A.A. Research of Neural Network Codec Configurations for Adaptive FPV Video Stream Frame Compression System When Controlling Unmanned Systems. Part II. Experiment. Elektrosvjaz’. 2024;10:59–69. (in Russ.) DOI:10.34832/ELSV.2024.59.10.009. EDN:IWGJLY

12. Behnam M., Marau R., Pedreiras P. Analysis and optimization of the MTU in real-time communications over Switched Ethernet. Proceedings of the 16th International Conference on Emerging Technologies and Factory Automation, ETFA2011, 05‒09 September 2011, Toulouse, France. IEEE; 2011. p.1‒7. DOI:10.1109/ETFA.2011.6059021

13. Rajkumar K., Swaminathan P. Combining TCP and UDP for secure data transfer. Indian Journal of Science and Technology. 2015;8(S9):285–291. DOI:10.17485/ijst/2015/v8iS9/65569

14. Garcia N.M., Freire M.M., Monteiro P.P. The Ethernet Frame Payload Size and Its Effect on IPv4 and IPv6 Traffic. Proceedings of the International Conference on Information Networking, 23‒25 January 2008, Busan, South Korea. IEEE; 2008. p.1‒5. DOI:10.1109/ICOIN.2008.4472813

15. Milanovic A., Srbljic S., Sruk V. Performance of UDP and TCP communication on personal computers. Proceedings of the 10th Mediterranean Electrotechnical Conference. Information Technology and Electrotechnology for the Mediterranean Countries, MeleCon 2000, 29‒31 May 2000, Lemesos, Cyprus. IEEE; 2000. vol.1. p.286‒289. DOI:10.1109/MELCON.2000.880422

16. Vivchar R.M., Ptushkin A.I., Sokolov B.V. The Technique for Multi-Criteria Evaluation of the Performance of Stochastic Complex Technical Systems. Aerospace Instrument-Making. 2022;7:3–14. (in Russ.) DOI:10.25791/aviakosmos.7.2022.1286. EDN:XCYDAI

17. Porshenev S.V., Koposov A.S. Using Rozenblatt-Parzen Approximaion for Recovering a Cumulative Distribution Function of Continuous Random Variable With a Bounded Single-Mode Distribution Rule. Polythematic online scientific journal of Kuban State Agrarian University. 2013;92:1–27. (in Russ.) EDN:RNEGGN

18. Parzen E. On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics. 1962;33(3):1065-1076. DOI:10.1214/aoms/1177704472

19. Bowman A.W., Hall P., Titterington D. M. Cross-validation in nonparametric estimation of probabilities and probability densities. Biometrika. 1984;71(2):341–351. DOI:10.1093/biomet/71.2.341. EDN:ILOHEZ

20.


Review

For citations:


Berezkin A.A., Vivchar R.M., Chenskiy A.A., Kirichek R.V. Research of Video Stream Frame Delay in UAV FPV-Control Information Exchange Channel in Hybrid Communication Network Terrestrial Segment. Proceedings of Telecommunication Universities. 2025;11(1):7-17. (In Russ.) https://doi.org/10.31854/1813-324X-2025-11-1-7-17. EDN: FTRJGU

Views: 159


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)