
Оценка влияния тонкой пленки воды на частотные зависимости S-параметров линии передачи при положительной и отрицательной температурах
https://doi.org/10.31854/1813-324X-2024-10-5-36-45
EDN: EORDYI
Аннотация
Актуальность. Обеспечение надежной и бесперебойной радиосвязи критически важно при изменении климатических условий ее эксплуатации. Совместное воздействие температуры и влажности воздуха может привести к изменению электрических характеристик приемопередающих устройств и тем самым нарушить канал связи. В сложных климатических условиях эксплуатации, за счет постоянного изменения температуры на поверхности входящих в состав печатных плат (ПП) может образовываться конденсат, влияющий на работоспособность всего устройства. В этой связи электрические характеристики изменяются, что необходимо учитывать при проектировании критичной радиоэлектронной аппаратуры. Следовательно, целесообразна оценка климатических воздействий на линии передачи, расположенные на печатных платах в широком диапазоне частот, что требует разработки новых моделей и методик.
Цель работы: оценить влияние температуры тонкой пленки воды на поверхности микрополосковой линии передачи (МЛП) на ее частотные зависимости S-параметров с помощью методов конечных элементов и лабораторных экспериментов.
Результаты. Представлена методика учета воздействия температуры и влажности окружающей среды на электрические характеристики МЛП, позволяющая оценить изменение S-параметров линии в широких диапазонах частот, температур и влажности воздуха, а также химического состава окружающей среды. Измерены S-параметры воды в контейнере, размещенном внутри коаксиальной камеры, в диапазонах частот и температур от 10 МГц до 12 ГГц и от ‒50 до 100 ℃, соответственно. Используя представленную модель, вычислены частотные зависимости электропроводности воды при разных температурах. Показано, что при положительной температуре электропроводность может достигать 6,5 См/м, а при отрицательной –1,3 См/м. Разработанная методика позволяет оценить влияние различной электропроводности воды на S-параметры МЛП. Показано влияние толщины слоя воды и льда на S-параметры МЛП. Выявлено, что модели, описывающие электропроводность воды, оказывают отличное влияние на электрические параметры линии передачи. Новизна: представлена методика учета влияния температуры и влажности окружающей среды на S-параметры линии передачи, отличающаяся использованием модели электропроводности воды на основе вносимых потерь, вычисленных из измеренных S-параметров коаксиальной камеры с водой в контейнере при изменении ее температуры. Практическая значимость представленной модели и методики позволяет оценить S-параметры линии в широких диапазонах частот, температур и влажности воздуха, а также химического состава окружающей среды.
Об авторах
В. Н. НевежинРоссия
аспирант кафедры телевидения и управления Томского государственного университета систем управления и радиоэлектроники
М. Е. Комнатнов
Россия
кандидат технических наук, доцент кафедры телевидения и управления Томского государственного университета систем управления и радиоэлектроники
Список литературы
1. Zhou Y., Lang R.H., Dinnat E.P., Le Vine David M. Seawater Debye Model Function at L-Band and its Impact on Salinity Retrieval from Aquarius Satellite Data // IEEE Transactions on Geoscience and Remote Sensing. 2021. Vol. 59. Iss. 10. PP. 8103‒8116. DOI:10.1109/TGRS.2020.3045771
2. Onibonoje M.O. A distributed control wireless system for environmental humidity determination based on adaptive controller model // Scientific African. 2021. Vol. 13. PP. 1‒8. DOI:10.1016/j.sciaf.2021.e00922
3. Conseil-Gudla H., Staliulionis Z., Jellesen M.S., Jabbari M., Hattel J.H., Ambat R. Humidity Buildup in Electronic Enclosures Exposed to Constant Conditions // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2017. Vol. 7. Iss. 3. PP. 412‒423. DOI:10.1109/TCPMT.2017.2655447
4. Ambat R., Conseil-Gudla H. Improving intrinsic corrosion reliability of printed circuit board assembly // Proceedings of the 18th Electronics Packaging Technology Conference (EPTC, Singapore, 30 November ‒ 03 December 2016). IEEE, 2016. PP. 540‒544. DOI:10.1109/EPTC.2016.7861538
5. Суппа М., Кузнецова Т. Методика исследования и испытаний влагозащитных покрытий, паяльных паст и технологических процессов // Технологии в электронной промышленности. 2014. № 7(75). С. 78‒82. EDN:SZSYXB
6. Jacobsen J.B., Krog J.P., Rimestad L., Riis A., Holm A.H. Climatic challenges and product level solutions for electronics in demanding applications // IMAPS Nordic. 2012. Vol. 536. Iss. 6986. PP. 1‒8.
7. Wang H., Liserre M., Blaabjerg F. Toward Reliable Power Electronics: Challenges, Design Tools, and Opportunities // IEEE Industrial Electronics Magazine. 2013. Vol. 7. Iss. 2. PP. 17‒26. DOI:10.1109/MIE.2013.2252958
8. Artemov V. The Dielectric Properties and Dynamic Structure of Water and Ice // The Electrodynamics of Water and Ice. Springer Series in Chemical Physics. Cham: Springer, 2021. Vol. 124. PP. 131‒169. DOI:10.1007/978-3-030-72424-5_4
9. Zhao L., Ma K., Yang Z. Changes of Water Hydrogen Bond Network with Different Externalities // International Journal of Molecular Sciences. 2015. Vol. 16. Iss. 4. PP. 8454‒8489. DOI:10.3390/ijms16048454
10. Kozak R., Khorsand K., Zarifi T., Golovin K., Zarifi M.H. Patch antenna sensor for wireless ice and frost detection // Scientific Reports. 2021. Vol. 11. Iss. 1. PP. 1‒11. DOI:10.1038/s41598-021-93082-2
11. Schoenlinner B., Steinmayer M., Schulte B. Cabin ceiling-integrated broadband antenna for wireless services in passenger aircraft // Proceedings of the 42nd European Microwave Conference (Amsterdam, Netherlands, 29 October ‒ 01 November 2012). IEEE, 2012. PP. 846‒849. DOI:10.23919/EuMC.2012.6459217
12. Ley S., Schilling S., Fiser O., Vrba J., Sachs J., Helbig M. Ultra-wideband Temperature Dependent Dielectric Spectroscopy of Porcine Tissue and Blood in the Microwave Frequency Range // Sensors. 2019. Vol. 19. Iss. 7. PP. 1‒21. DOI:10.3390/s19071707
13. Gregory A.P., Quéléver K., Allal D., Jawad O. Validation of a Broadband Tissue-Equivalent Liquid for SAR Measurement and Monitoring of its Dielectric Properties for Use in a Sealed Phantom // Sensors. 2020. Vol. 20. Iss. 10. PP. 1‒13. DOI:10.3390/s20102956
14. Lun’kov A.E., Kovalev D.G. Dispersion of Water Conductivity in the Frequency Range of 104–106 Hz // Russian Journal of Electrochemistry. 2019. Vol. 55. PP. 1246‒1250. DOI:10.1134/S1023193519120103
15. Zhuravlev V.A., Suslyaev V.I., Zhuravlev A.V., Korovin E.Yu. Analysis of Dielectric Spectra of Water with Conductive Impurities in a Wide Frequency Range // Russian Physics Journal. 2018. Vol. 60. PP. 1893‒1900. DOI:10.1007/s11182-018-1299-4
16. Water Structure and Science. URL: https://water.lsbu.ac.uk/water/water_structure_science.html (Accessed 21.01.2024)
17. Wilson P.F., Ma M.T., Adams J.W. Techniques for measuring the electromagnetic shielding effectiveness of materials. I. Far-field source simulation // IEEE Transactions on Electromagnetic Compatibility. 1988. Vol. 30. Iss. 3. PP. 239‒250. DOI:10.1109/15.3302
18. Wilson P.F., Ma M.T. A Study of Techniques for Measuring the Electromagnetic Shielding Effectiveness of Materials. NBS technical note № 1095. Washington: U.S. Government Printing Office, 1986. 66 p.
19. Невежин В.Н., Бусыгина А.В., Комнатнов М.Е. Анализ электрических параметров жидкостей в коаксиальной камере при изменении температуры // Ural Radio Engineering Journal. 2023. Т. 7. № 1. С. 37–55. DOI:10.15826/urej.2023.7.1.003. EDN:UJYZTS
20. Demakov A.V., Komnatnov M.E. Development of an improved coaxial cell for measuring the shielding effectiveness of materials // IOP Conference Series: Materials Science and Engineering. 2020. Vol. 734. PP. 1‒6. DOI:10.1088/1757-899X/734/1/012077
21. Database Summary // IT IS FOUNDATION. URL: https://itis.swiss/virtual-population/tissue-properties/database/database-summary (Accessed 21.01.2024)
22. Vidjak K., Hessinger C., Cavagnaro M. Broadband Dielectric Spectroscopy with a Microwave Ablation Antenna // Sensors. 2023. Vol. 23. Iss. 5. PP. 1‒21. DOI:10.3390/s23052579
Рецензия
Для цитирования:
Невежин В.Н., Комнатнов М.Е. Оценка влияния тонкой пленки воды на частотные зависимости S-параметров линии передачи при положительной и отрицательной температурах. Труды учебных заведений связи. 2024;10(5):24-33. https://doi.org/10.31854/1813-324X-2024-10-5-36-45. EDN: EORDYI
For citation:
Neveznin V.N., Komnatnov M.E. Evaluating the Influence of Thin Film of Water on the Frequency Dependences of Transmission Line S-Parameters at Positive and Negative Temperatures. Proceedings of Telecommunication Universities. 2024;10(5):24-33. (In Russ.) https://doi.org/10.31854/1813-324X-2024-10-5-36-45. EDN: EORDYI