Preview

Proceedings of Telecommunication Universities

Advanced search
Cover Image

Application of the Gray Wolf Optimization Algorithm and Neural Networks for Solving Discrete Problems

https://doi.org/10.31854/1813-324X-2024-10-5-24-35

EDN: BEODCG

Abstract

Relevance. In recent decades, metaheuristic optimization methods have become popular for solving complex problems that require searching for global extrema. Algorithms such as genetic algorithm (GA), ant colony optimization (ACO), particle swarm optimization (PSO), as well as more modern approaches such as cat pack optimization (CSO) and gray wolf pack optimization (GWO) demonstrate high efficiency, but their application is often limited by the conditions of continuity and differentiability of the objective functions. This is a challenge when solving problems with discrete data, where such requirements are not met. In this context, the search for methods that allow adapting metaheuristic algorithms to work with discrete functions is of particular relevance.

Aim. The study is aimed at testing the hypothesis about the possibility of using a neural network trained on a limited set of discrete data as an approximation of a function sufficient for the correct execution of the GWO algorithm when searching for a global minimum. The implementation of this hypothesis can significantly expand the scope of GWO, making it available for a wider range of problems where functions are defined on discrete sets.

Methods. The study is based on the analysis of existing approaches and experimental verification of the hypothesis on two test functions: a linear function and a Booth function, which are widely used as standards for evaluating the performance of optimization algorithms. Numerical experiments were conducted using neural networks as an approximating model to obtain the results.

Solution. During the experiments, an analysis of the applicability of neural networks for approximating discrete functions was carried out, which showed the success of this approach. It was found that neural networks can approximate discrete functions with high accuracy, creating conditions for a successful search for a global minimum using the GWO algorithm.

Novelty. For the first time, a hypothesis was proposed and tested on the use of neural networks for approximating objective functions in metaheuristic optimization problems on discrete data. This direction has not previously received due coverage in the scientific literature, which adds significance to the obtained results and confirms the effectiveness of the proposed approach.

Practical significance. The results of the study open up new prospects for the application of algorithms such as GWO in optimization problems based on discrete data, expanding the capabilities of metaheuristic methods and facilitating their implementation in a wider class of applied problems, including problems where the use of other methods is limited.

About the Authors

A. A. Lisov
South Ural State University (NRU)
Russian Federation


A. G. Vozmilov
South Ural State University (NRU)
Russian Federation


K. A. Gundarev
South Ural State University (NRU)
Russian Federation


A. Z. Kulganatov
South Ural State University (NRU)
Russian Federation


References

1. Bonabeau E., Dorigo M., Theraulaz G. Swarm Intelligence: From Natural to Artificial Systems. 1999. DOI:10.1093/oso/9780195131581.001.0001

2. Dorigo M., Birattari M., Stutzle T. Ant colony optimization. IEEE Computational Intelligence Magazine. 2006;1(4):28‒39. DOI:10.1109/MCI.2006.329691

3. Kennedy J., Eberhart R. Particle swarm optimization. Proceedings of the International Conference on Neural Networks, 27 November ‒ 01 December 1995, Perth, Australia. IEEE; 1995. p.1942‒1948. DOI:10.1109/ICNN.1995.488968

4. Chu S.C., Tsai P.W., Pan J.S. Cat Swarm Optimization. Proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence, 7‒11 August 2006, Guilin, China. Lecture Notes in Computer Science, vol.4099. Berlin, Heidelberg: Springer; 2006. p.854‒858. DOI:10.1007/978-3-540-36668-3_94

5. Johnson J.M., Rahmat-Samii Y. Genetic algorithm optimization and its application to antenna design. Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, 20‒24 June 1994, Seattle, USA, vol.1. IEEE; 1994. p.326‒329. DOI:10.1109/APS.1994.407746

6. Afshar A., Massoumi F., Afshar A., Mariño M.A. State of the Art Review of Ant Colony Optimization Applications in Water Resource Management. Water Resources Management. 2015;29:3891‒3904. DOI:10.1007/s11269-015-1016-9

7. Parsopoulos K.E., Vrahatis M.N. Particle swarm optimization and intelligence: advances and applications. Advances and applications. Information Science Reference; 2010. 328 p. DOI:10.13140/2.1.3681.1206

8. Mirjalili S., Mirjalili S.M., Lewis A. Grey wolf optimizer. Advances in Engineering Software. 2014;69:46‒61. DOI:10.1016/ j.advengsoft.2013.12.007

9. Mittal N., Singh U., Sohi B. Modified Grey Wolf Optimizer for Global Engineering Optimization. Applied Computational Intelligence and Soft Computing. 2016;2016:7950348. DOI:10.1155/2016/7950348

10. Mirjalili S., Saremi S.M., Mirjalili L.D., Coelho S. Multi-objective grey wolf optimizer: A novel algorithm for multicriterion optimization. Expert Systems with Applications. 2016;47:106‒119. DOI:10.1016/j.eswa.2015.10.039

11. Hu P., Pan J.S., Chu S.C. Improved Binary Grey Wolf Optimizer and Its application for feature selection. Knowledge-Based Systems. 2020;195:105746. DOI:10.1016/j.knosys.2020.105746

12. Vozmilov A., Andreev L., Lisov A. Development of an Algorithm for the Program to Recognize Defects on the Surface of Hot-Rolled Metal. Proceedings of the International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM, 16‒20 May 2022, Sochi, Russian Federation. IEEE; 2022. p.1004‒1008. DOI:10.1109/ICIEAM54945.2022.9787116

13. Lisov A.A. Development of an electronic differential system for electric vehicles based on deep neural network. Modern Transportation Systems and Technologies. 2024;10(3):351–367. (in Russ.) DOI:10.17816/transsyst634127. EDN:DFDXJO

14. Lisov A.A., Kulganatov A.Z., Panishev S.A. Using convolutional neural networks for acousticbased emergency vehicle detection. Modern Transportation Systems and Technologies. 2023;9(1):95‒107. (in Russ.) DOI:10.17816/transsyst20239195-107. EDN:MAGRJH

15. Vozmilov A.G., Lisov A.A., Urmanov V.G., Sineva G.N. Determination of the type of potato leaves diseases with using machine learning. Bulletin NGIEI. 2023;3(142):7–16. (in Russ.) DOI:10.24412/2227-9407-20233-7-16. EDN:BXWBRC

16. Emary E., Zawbaa H.M., Grosan C., Hassenian A.E. Feature Subset Selection Approach by Gray-Wolf Optimization. Proceedings of the First International Afro-European Conference for Industrial Advancement, AECIA, 2‒4 September 2024, Belfast, UK. Advances in Intelligent Systems and Computing, vol.334. Cham: Springer; 2015. p.1‒13. DOI:10.1007/978-3-319-13572-4_1

17. Emary E., Zawbaa H.M., Hassanien A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing. 2016;172:371–381. DOI:10.1016/j.neucom.2015.06.083

18. Vosooghifard M., Ebrahimpour H. Applying Grey Wolf Optimizer-based decision tree classifer for cancer classification on gene expression data. Proceedings of the International Conference on Computer and Knowledge Engineering, ICCKE, 29 October 2015, Mashhad, Iran. IEEE; 2015. p.147–151. DOI:10.1109/ICCKE.2015.7365818

19. Yamany W., Emary E., Hassanien A.E. New Rough Set Attribute Reduction Algorithm Based on Grey Wolf Optimization. Proceedings of the 1st International Conference on Advanced Intelligent System and Informatics, AISI, Beni Suef, Egypt, 28–30 November 2015. Advances in Intelligent Systems and Computing, vol.407. Cham: Springer; 2015. p.241–251. DOI:10.1007/978-3-319-26690-9_22

20. Mirjalili S. How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Applied Intelligence. 2015;43:150‒161. DOI:10.1007/s10489-014-0645-7

21. Mosavi M.R., Khishe M., Ghamgosar A. Classification of sonar data set using neural network trained by gray wolf optimization. Neural Network World. 2016;26(4):393‒415. DOI:10.14311/NNW.2016.26.023

22. Muangkote N., Sunat K., Chiewchanwattana S. An improved grey wolf optimizer for training q-Gaussian Radial Basis Functional-link nets. Proceedings of the International Computer Science and Engineering Conference, ICSEC, Thailand, 30 July ‒ 01 August 2014, Khon Kaen. IEEE; 2014. p.209–214. DOI:10.1109/ICSEC.2014.6978196

23. Vapnik V. The nature of statistical learning theory. New York: Springer, 2015.

24. Vapnik V.N. An overview of statistical learning theory. IEEE Transactions on Neural Networks. 1999;10(5):988‒999. DOI:10.1109/72.788640

25. Eswaramoorthy S., Sivakumaran N., Sekaran S. Grey wolf optimization-based parameter selection for support vector machines. Compel: International journal for computation and mathematics in electrical and electronic engineering. 2016;35(5):1513‒1523.

26. Mustaffa Z., Sulaiman M.H., Kahar M.N.M. Training LSSVM with GWO for price forecasting. Proceedings of the International Conference on Informatics, Electronics & Vision, ICIEV, 15‒18 June 2015, Fukuoka, Japan. IEEE; 2015. DOI:10.1109/ICIEV.2015.7334054

27. Mustaffa Z., Sulaiman M.H., Kahar M.N.M. LS-SVM hyperparameters optimization based on GWO algorithm for time series forecasting. Proceedings of the 4th International Conference on Software Engineering and Computer Systems, ICSECS, 19‒21 August 2015, Kuantan, Malaysia. IEEE; 2015. p.183–188. DOI:10.1109/ICSECS.2015.7333107

28. Kumar V., Chhabra J.K., Kumar D. Grey Wolf Algorithm-Based Clustering Technique. Journal of Intelligent Systems. 2017;26(1):153‒168. DOI:10.1515/jisys-2014-0137

29. Zhang S., Zhou Y. Grey Wolf Optimizer Based on Powell Local Optimization Method for Clustering Analysis. Discrete Dynamics in Nature and Society. 2015;1:481360. DOI:10.1155/2015/481360

30. Dao T.K., Shieh C.S., Nguyen T.T., Wang H.Y. Enhanced Diversity Herds Grey Wolf Optimizer for Optimal Area Coverage in Wireless Sensor Networks. Proceedings of the Tenth International Conference on Genetic and Evolutionary Computing, ICGEC, 7‒9 November 2016, Fuzhou City, China. Advances in Intelligent Systems and Computing, vol.536. Cham: Springer; 2016. p.174‒182. DOI:10.1007/978-3-319-48490-7_21

31. Volkov A.N. Dynamic Fog Computing Towards Green ICT. Proceedings of Telecommunication Universities. 2024;10(3): 24‒34. (in Russ.) DOI:10.31854/1813-324X-2024-10-3-24-34. EDN:QOELMJ

32. Abdullah H.M., Kumar A.S., Ahmed A.A., Mosleh M.A. Hybrid optimization based on spectrum aware opportunistic routing for cognitive radio ad hoc networks. Informatics and Automation. 2023;22(4):880‒905. DOI:10.15622/ia.22.4.7. EDN:VPRGZW

33. Li S.X., Wang, J.S. Dynamic Modeling of Steam Condenser and Design of PI Controller Based on Grey Wolf Optimizer. Mathematical Problems in Engineering. 2015;1:120975. DOI:10.1155/2015/120975

34. Yadav S., Verma S.K., Nagar S.K. Optimized PID Controller for Magnetic Levitation System. IFAC-PapersOnLine. 2016;49(1):778‒782. DOI:10.1016/j.ifacol.2016.03.151

35. Wong L.I., Sulaiman M.H., Mohamed M.R., Hong M.S. Grey Wolf Optimizer for Solving Economic Dispatch Problems. Proceedings of the International Conference on Power and Energy, PECon, 01‒03 December 2014, Kuching, Malaysia. IEEE; 2014. p.150–154. DOI:10.1109/PECON.2014.7062431

36. Song H.M., Sulaiman M.H., Mohamed M.R. An Application of Grey Wolf Optimizer for Solving Combined Economic Emission Dispatch Problems. International Review on Modelling and Simulations. 2014;7(5):838–844. DOI:10.15866/iremos.v7i5.2799

37. Tsai P.W., Dao T.K. Robot path planning optimization based on multiobjective grey wolf optimizer. Proceedings of the Tenth International Conference on Genetic and Evolutionary Computing, ICGEC, 7‒9 November 2016, Fuzhou City, China. Advances in Intelligent Systems and Computing, vol.536. Cham: Springer; 2016. p.166–173. DOI:10.1007/978-3-319-48490-7_20

38. Zhang S., Zhou Y., Li Z., Pan W. Grey wolf optimizer for unmanned combat aerial vehicle path planning. Advances in Engineering Software. 2016. p.121‒136. DOI:10.1016/j.advengsoft.2016.05.015

39. Lu C., Xiao S., Li X., Gao L. An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Advances in Engineering Software. 2016;99:161‒176. DOI:10.1016/j.advengsoft.2016.06.004

40. Mittal N., Singh U., Sohi B.S. Modified Grey Wolf Optimizer for Global Engineering Optimization. Applied Computational Intelligence and Soft Computing. 2016;2016:4598. DOI:10.1155/2016/7950348


Review

For citations:


Lisov A.A., Vozmilov A.G., Gundarev K.A., Kulganatov A.Z. Application of the Gray Wolf Optimization Algorithm and Neural Networks for Solving Discrete Problems. Proceedings of Telecommunication Universities. 2024;10(5):80-91. (In Russ.) https://doi.org/10.31854/1813-324X-2024-10-5-24-35. EDN: BEODCG

Views: 144


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)