Preview

Proceedings of Telecommunication Universities

Advanced search
Cover Image

A set of Models for Device Positioning in Sixth Generation Networks. Part 1. Methods Survey and Problem Statement

https://doi.org/10.31854/1813-324X-2024-10-4-73-98

EDN: FTOVZJ

Abstract

Relevance. Today, terahertz radio systems are considered as a technological basis for integrating methods and means of radio communication and radar in promising sixth-generation networks. If in 4G LTE networks the capabilities of positioning user equipment using the infrastructure of base stations were considered as auxiliary options, then in 5G NR networks, location determination technologies (LDTs) have become full-fledged services, the requirements for which are specified along with communication services. A new trend in positioning in 5G NR networks, compared to 4G LTE networks, has become a single-position assessment of the coordinates and orientation of the user equipment based on signals from a single base station with the ability to distinguish between direct and reflected signals. 6G networks are still in their infancy, but it can already be stated that they mark the next stage in the evolution of digital ecosystems, which is characterized by the convergence of communication technologies, localization and sensing of radio air and the surrounding space by radio engineering means.

Purpose. This work opens a research cycle devoted to the review of models, methods and algorithms for positioning devices in 6G networks. The goal of the cycle is to find and justify new radio engineering means for achieving decimeter accuracy in 6G device coordinate estimates. The first part of the cycle provides an overview of the methods and formalization of the model for collecting primary measurements.

Method is an analytical review of the state of the problem based on current scientific publications, conceptual modeling, categorical approach, expert combination, comparative analysis, formalization, mathematical and simulation modeling.

Results. As a result of the review of device positioning methods during the transition to 6G networks, key performance indicators and LDT scenarios are updated. As a result of the comparative analysis of 5G and 6G networks, new factors, advantages and disadvantages of positioning technologies during the transition from millimeter wave networks to terahertz networks are systematized. A formalized mathematical model for collecting primary measurements is used in the simulation model for assessing the accuracy of device positioning in the second part of the cycle.

Novelty. This cycle is the first such study in the Russian scientific segment on network positioning of the sixth generation of the terahertz range, in which the author's version provides an overview of methods and a systematization of a set of new factors of the OMP in communication networks.

The theoretical significance of the review-analysis lies in the establishment of both technological obstacles and new opportunities for increasing positioning accuracy during the transition to 6G networks.

The practical significance of the formalized mathematical model lies in its subsequent software implementation for numerical justification of the limits of positioning accuracy in 6G networks.

About the Author

G. A. Fokin
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation


References

1. Fokin G.A. A set of Models and Methods for Positioning Devices in Fifth-Generation Networks. D.Sc Thesis. St. Petersburg: The Bonch-Bruevich Saint-Petersburg State University of Telecommunications Publ.; 2021. 499 p. (in Russ.) EDN:PQMSQX

2. Fokin G.A. Technologies of Network Positioning. St. Petersburg: The Bonch-Bruevich State University of Telecommunications Publ.; 2020. 558 p. (in Russ.) EDN:PQSMAG

3. Fokin G.A. 5G Network Positioning Technologies. Moscow: Hot Line – Telecom Publ.; 2021. 456 p. (in Russ.) EDN:BHFAPI

4. Fokin G. Evolution of positioning technologies in 2G-4G networks. Part 1. Last mile. 2020;2(87):32‒39. (in Russ.) DOI:10.22184/2070-8963.2020.87.2.32.38. EDN:MYRTVE

5. Fokin G. Evolution of positioning technologies in 2G-4G networks. Part 2. Last mile. 2020;3(88):30‒35. (in Russ.) DOI:10.22184/2070-8963.2020.88.3.30.35. EDN:WWXGQI

6. Fokin G. Model of 5G NR Precision Metro Network Positioning Technology. Part 1. Configuration of PRS Signals. Proceedings of Telecommunication Universities. 2022;8(2):48‒63. DOI:10.31854/1813-324X-2022-8-2-48-63 (in Russ.) EDN:OEXILA

7. Fokin G. Model of 5G NR Precision Metro Network Positioning Technology. Part 2. PRS Signal Processing. Proceedings of Telecommunication Universities. 2022;8(3):80‒99. DOI:10.31854/1813-324X-2022-8-3-80-99 (in Russ.) EDN:BRJHYG

8. Dvornikov S.V., Fokin G.A., Al-Odhari A.Kh., Fedorenko I.V. Assessing the influence of PRS LTE signal properties on positioning accuracy. Voprosy radioelektroniki. Seriya: Tekhnika televideniya. 2017;4:94‒103. (in Russ.) EDN:YQWNLJ

9. Dvornikov S.V., Fokin G.A., Al-Odhari A.Kh., Fedorenko I.V. Study of the dependence of the value of the geometric factor of reducing accuracy on the topology of receiving points. Voprosy radioelektroniki. Seriya: Tekhnika televideniya. 2018;2:99‒104. (in Russ.) EDN:XRZIXB

10. Fokin G.A. 5G network positioning and probabilistic models for assessing its accuracy. T-Comm. 2020;14(12):4‒17. (in Russ.) DOI:10.36724/2072-8735-2020-14-12-4-17. EDN:DQRXIK

11. Fokin G.A., Kucheryavy A.E. Network positioning in the 5G ecosystem. Electrosvyaz. 2020;9:51‒58. (in Russ.) DOI:10.34832/ELSV.2020.10.9.006. EDN:FNHQSH

12. Fokin G.A. Using network positioning methods in the 5G ecosystem. Elektrosvyaz. 2020;11:29‒37. (in Russ.) DOI:10.34832/ELSV.2020.12.11.002. EDN:LKBGPU

13. Lazarev V., Fokin G. Positioning Accuracy Evaluation of Radio Emission Sources Using Time Difference of Arrival and Angle of Arrival Methods. Part 1. Proceedings of Telecommunication Universities. 2019;5(2):88‒100. (in Russ.) DOI:10.31854/1813-324X-2019-5-2-88-100. EDN:FFMJWI

14. Fokin G., Lazarev V. Positioning Accuracy Evaluation of Radio Emission Sources Using Time Difference of Arrival and Angle of Arrival Methods. Part 2. 2D-Simulation. Proceedings of Telecommunication Universities. 2019;5(4):65‒78. (in Russ.) DOI:10.31854/1813-324X-2019-5-4-65-78. EDN:RJHISC

15. Fokin G., Lazarev V. Positioning Accuracy Evaluation of Radio Emission Sources Using Time Difference of Arrival and Angle of Arrival Methods. Part 3. 3D-Simulation. Proceedings of Telecommunication Universities. 2020;6(2):87‒102. (in Russ.) DOI:10.31854/1813-324X-2020-6-2-87-102. EDN:FKSYIZ

16. Fokin G.A. Positioning procedures in 5G networks. Vestnik sviazy. 2021;11:2‒8. (in Russ.) EDN:DEFMNY

17. Fokin G.A. Methodology for identifying line of sight in radio links of 4th generation mobile communication networks with spatial signal processing. Proceedings of the Radio Research Institute. 2013;3:78‒82. (in Russ.) EDN:RVFDCV

18. Fokin G.A. Simulation modeling of the process of radio wave propagation in radio links of 4th generation mobile communication networks with spatial signal processing. Proceedings of the Radio Research Institute. 2013;3:83‒89. (in Russ.) EDN:RVFDDF

19. Shahmansoori A., Garcia G.E., Destino G., Seco-Granados G., Wymeersch H. 5G Position and Orientation Estimation through Millimeter Wave MIMO. Proceedings of the 2015 IEEE Globecom Workshops, GC Wkshps, 06‒10 December 2015, San Diego, USA. IEEE; 2015. DOI:10.1109/GLOCOMW.2015.7413967

20. Shahmansoori A., Garcia G.E., Destino G., Seco-Granados G., Wymeersch H. Position and Orientation Estimation Through Millimeter-Wave MIMO in 5G Systems. IEEE Transactions on Wireless Communications. 2018;17(3):1822‒1835. DOI:10.1109/TWC.2017.2785788

21. Talvitie J., Valkama M., Destino G., Wymeersch H. Novel Algorithms for High-Accuracy Joint Position and Orientation Estimation in 5G mmWave Systems. Proceedings of the 2017 IEEE Globecom Workshops, GC Wkshps, 04‒08 December 2017, Singapore. IEEE; 2017. DOI:10.1109/GLOCOMW.2017.8269069

22. Abu-Shaban Z., Zhou X., Abhayapala T., Seco-Granados G., Wymeersch H. Error Bounds for Uplink and Downlink 3D Localization in 5G Millimeter Wave Systems. IEEE Transactions on Wireless Communications. 2018;17(8):4939‒4954. DOI:10.1109/TWC.2018.2832134

23. Abu-Shaban Z., Wymeersch H., Abhayapala T., Seco-Granados G. Single-Anchor Two-Way Localization Bounds for 5G mmWave Systems. IEEE Transactions on Vehicular Technology. 2020;69(6):6388‒6400. DOI:10.1109/TVT.2020.2987039

24. Guidi F., Guerra A., Dardari D. Personal Mobile Radars with Millimeter-Wave Massive Arrays for Indoor Mapping. IEEE Transactions on Mobile Computing. 2016;15(6):1471‒1484. DOI:10.1109/TMC.2015.2467373

25. Guerra A., Guidi F., Dardari D. Position and orientation error bound for wideband massive antenna arrays. Proceedings of the International Conference on Communication Workshop, ICCW, 08‒12 June 2015. IEEE; 2015. p.853‒858. DOI:10.1109/ICCW.2015.7247282

26. Guerra A., Guidi F., Dardari D. Single-Anchor Localization and Orientation Performance Limits Using Massive Arrays: MIMO vs. Beamforming. IEEE Transactions on Wireless Communications. 2018;17(8):5241‒5255. DOI:10.1109/TWC.2018.2840136

27. Alsabah M., Naser M.A., Mahmmod B.M., Abdulhussain S.H., Eissaet M.R., Al-Baidhanial A., et al. 6G Wireless Communications Networks: A Comprehensive Survey. IEEE Access. 2021;9:148191‒148243. DOI:10.1109/ACCESS.2021.3124812

28. Tataria H., Shafi M., Molisch A.F., Dohler M., Sjöland H., Tufvesson F. 6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities. Proceedings of the IEEE. 2021;109(7):1166‒1199. DOI:10.1109/JPROC.2021.3061701

29. Jiang W., Han B., Habibi M.A., Schotten H.D. The Road Towards 6G: A Comprehensive Survey. IEEE Open Journal of the Communications Society. 2021;2:334‒366. DOI:10.1109/OJCOMS.2021.3057679

30. De Lima C., Belot D., Berkvens R., Bourdoux A., Dardari D, Guillaud M., Isomursu M., et al. Convergent Communication, Sensing and Localization in 6G Systems: An Overview of Technologies, Opportunities and Challenges. IEEE Access. 2021;9:26902‒26925. DOI:10.1109/ACCESS.2021.3053486

31. Liu F., Cui Y., Masouros C., Xu J., Han T.X., Eldar Y.C., Buzzi S., et al. Integrated Sensing and Communications: Toward Dual-Functional Wireless Networks for 6G and Beyond. IEEE Journal on Selected Areas in Communications. 2022;40(6):1728‒1767. DOI:10.1109/JSAC.2022.3156632

32. Wymeersch H., Pärssinen A., Abrudan T.E., Wolfgang A., Haneda K, Sarajlic M. et al. 6G Radio Requirements to Support Integrated Communication, Localization, and Sensing. Proceedings of the Joint European Conference on Networks and Communications & 6G Summit, EuCNC/6G Summit, 07‒10 June 2022, Grenoble, France. IEEE; 2022. p.463‒469. DOI:10.1109/EuCNC/6GSummit54941.2022.9815783

33. Wymeersch H., Shrestha D., de Lima C.M., Yajnanarayana V., Richerzhagen B., Keskin M.F., et al. Integration of Communication and Sensing in 6G: a Joint Industrial and Academic Perspective. 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, Helsinki, Finland, 13‒16 September 2021. IEEE; 2021. p.1‒7. DOI:10.1109/PIMRC50174.2021.9569364

34. Wymeersch H., Seco-Granados G. Radio Localization and Sensing–Part I: Fundamentals. IEEE Communications Letters. 2022;26(12):2816‒2820. DOI:10.1109/LCOMM.2022.3206821

35. Wymeersch H., Seco-Granados G. Radio Localization and Sensing–Part II: State-of-the-Art and Challenges. IEEE Communications Letters. 2022;26(12):2821‒2825. DOI:10.1109/LCOMM.2022.3206846

36. González-Prelcic N., Keskin M.F., Kaltiokallio O., Valkama M., Dardari D., Shen X., et al. The Integrated Sensing and Communication Revolution for 6G: Vision, Techniques, and Applications. Proceedings of the IEEE. 2024. DOI:10.1109/JPROC.2024.3397609

37. Behravan A., Yajnanarayana V., Keskin M.F., Chen H., Shrestha D., Abrudan T.E., et al. Positioning and Sensing in 6G: Gaps, Challenges, and Opportunities. IEEE Vehicular Technology Magazine. 2023;18(1):40‒48. DOI:10.1109/MVT.2022.3219999

38. Zheng P., Ballal T., Chen H., Wymeersch H., Al-Naffouri T.Y. Localization Coverage Analysis of THz Communication Systems with a 3D Array. Proceedings of the Global Communications Conference, GLOBECOM, 04‒08 December 2022, Rio de Janeiro, Brazil. IEEE; 2022. p.5378‒5383. DOI:10.1109/GLOBECOM48099.2022.10000653

39. Zheng P., Ballal T., Chen H., Wymeersch H., Al-Naffouri T.Y. Coverage Analysis of Joint Localization and Communication in THz Systems With 3D Arrays. IEEE Transactions on Wireless Communications. 2024;23(5):5232‒5247. DOI:10.1109/TWC.2023.3325192

40. Yajnanarayana V., Wymeersch H. Multistatic Sensing of Passive Targets Using 6G Cellular Infrastructure. 2023 Joint European Conference on Networks and Communications & 6G Summit, EuCNC/6G Summit, Gothenburg, Sweden, 06‒09 June 2023. p.132‒137. DOI:10.1109/EuCNC/6GSummit58263.2023.10188243

41. Mateos-Ramos J.M., Song J., Wu Y., Häger C., Keskin M.F., Yajnanarayana V., et al. End-to-End Learning for Integrated Sensing and Communication. Proceedings of the International Conference on Communications, 16‒20 May 2022, Seoul, Republic of Korea. IEEE; 2022. p.1942‒1947. DOI:10.1109/ICC45855.2022.9838308

42. Rivetti S., Mateos-Ramos J.M., Wu Y., Song J., Keskin M.F., Yajnanarayana V., et al. Spatial Signal Design for Positioning via End-to-End Learning. IEEE Wireless Communications Letters. 2023;12(3):525‒529. DOI:10.1109/LWC.2022.3233475

43. Huang C., Hu S., Alexandropoulos G.C., Zappone A., Zappone A., Yuen C., et al. Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends. IEEE Wireless Communications. 2020;27(5):118‒125. DOI:10.1109/MWC.001.1900534

44. Elzanaty A., Guerra A., Guidi F., Dardari D., Alouini M.-S. Toward 6G Holographic Localization: Enabling Technologies and Perspectives. IEEE Internet of Things Magazine. 2023;6(3):138‒143. DOI:10.1109/IOTM.001.2200218

45. Basar E., Yildirim I., Kilinc F. Indoor and Outdoor Physical Channel Modeling and Efficient Positioning for Reconfigurable Intelligent Surfaces in mmWave Bands. IEEE Transactions on Communications. 2021;69(12):8600‒8611. DOI:10.1109/TCOMM.2021.3113954

46. He J., Jiang F., Keykhosravi K., Kokkoniemi J., Wymeersch H., Juntti M. Beyond 5G RIS mmWave Systems: Where Communication and Localization Meet. IEEE Access. 2022;10:68075‒68084. DOI:10.1109/ACCESS.2022.3186510

47. Kireev A., Fokin G. Accuracy Evaluation of Local Positioning by Radiomap Building and Inertial Navigation System. Proceedings of Telecommunication Universities. 2017;3(4):54‒62. (in Russ.) EDN:YMIHOI

48. Fokin G., Vladyko A. The Vehicles Positioning in Ultra-Dense 5G/V2X Radio Access Networks Using the Extended Kalman Filter. Proceedings of Telecommunication Universities. 2020;6(4):45‒59. (in Russ.) DOI:10.31854/1813-324X-2020-6-4-45-59. EDN:PYHUMZ

49. Fokin G., Vladyko A. Positioning of Vehicles with the Fusion of Time of Arrival, Angle of Arrival and Inertial Measurements in the Extended Kalman Filter. Proceedings of Telecommunication Universities. 2021;7(2):51‒67. (in Russ.) DOI:10.31854/1813-324X-2021-7-2-51-67. EDN:AIEESO

50. Fokin G.A. Beam alignment procedures for 5G NR devices. Elektrosvyaz. 2022;2:26‒31. (in Russ.) DOI:10.34832/ELSV.2022.27.2.003. EDN:UVALJF

51. Fokin G.A. Beam steering models in 5G NR networks. Part 1. Beam alignment when establishing a connection. Last mile. 2022;1(101):42‒49. (in Russ.) DOI:10.22184/2070-8963.2022.101.1.42.49. EDN:PTALDP

52. Fokin G. Beam control models in 5G NR networks. Part 2. Alignment of beams during radio communication. Last mile. 2022;3(103):62‒69. DOI:10.22184/2070-8963.2022.103.3.62.68

53. Chen H., Sarieddeen H., Ballal T., Wymeersch H., Alouini M.-S., Al-Naffouri T.Y. A Tutorial on Terahertz-Band Localization for 6G Communication Systems. IEEE Communications Surveys & Tutorials. 2022;24(3):1780‒1815. DOI:10.1109/COMST.2022.3178209

54. Chen H., Aghdam S.R., Keskin M.F., Wu Y., Lindberg S., Wolfgang A., et al. MCRB-based Performance Analysis of 6G Localization under Hardware Impairments // Proceedings of the International Conference on Communications Workshops, ICC Workshops, 16‒20 May 2022, Seoul, Republic of Korea. IEEE; 2022. p.115‒120. DOI:10.1109/ICCWorkshops53468.2022.9814598


Review

For citations:


Fokin G.A. A set of Models for Device Positioning in Sixth Generation Networks. Part 1. Methods Survey and Problem Statement. Proceedings of Telecommunication Universities. 2024;10(4):73-98. (In Russ.) https://doi.org/10.31854/1813-324X-2024-10-4-73-98. EDN: FTOVZJ

Views: 223


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)