
Оценка характеристик мультифрактального спектра фрактальной размерности сетевого трафика и компьютерных атак в IоT
https://doi.org/10.31854/1813-324X-2024-10-3-104-115
EDN: KIRCNK
Аннотация
Актуальность. Изменение фрактальной размерности сетевого трафика может служить индикатором атак или аномальной активности. Фрактальный анализ позволяет выявлять изменения временной структуры трафика и сигнализировать о возможных угрозах. Наблюдаемое в широких временных масштабах самоподобие указывает на мультифрактальную природу аномалий, что требует дальнейшего изучения. Таким образом, разработка методов для обнаружения и классификации кибератак с использованием мультифрактального анализа является актуальной задачей для повышения информационной безопасности.
Цель работы. Повышение эффективности обнаружения и классификации компьютерных атак в сетях IoT методами машинного обучения за счет расширения количества атрибутов, характеризующих параметры мультифрактального спектра фрактальной размерности.
Методы исследования: дискретный вейвлет анализ, мультифрактальный анализ, машинное обучение, программная реализация комбинированного метода многоклассовой классификации в совокупности с методами фрактального анализа.
Результаты. Разработана методология оценки характеристик мультифрактального спектра фрактальной размерности трафика с помощью последовательности текущих оценок фрактальной размерности в окне анализа фиксированной длины в зависимости от интервала разрешения (времени дискретизации). Приведены аналитические результаты экспериментальных оценок мультифрактального анализа обрабатываемых процессов в сетях IoT. Оценена информационная значимость дополнительных атрибутов компьютерных атак и нормального трафика для случая бинарной и многоклассовой классификации по индексу Джини для двух случаев: без добавления мультифрактального спектра фрактальной размерности и с добавлением мультифрактального спектра фрактальной размерности. Показано, что основная концентрация наиболее значимых атрибутов приходится на интервал дискретизации
500 мс…1,5 с
Новизна. Введено понятие мультифрактального спектра фрактальной размерности в виде последовательности текущих оценок фрактальной размерности в окне анализа фиксированной длины в зависимости от интервала разрешения.
Практическая значимость. Представленный метод оценки параметров мультифрактального спектра фрактальной размерности является универсальным и может быть применен в различных информационных системах.
Об авторах
О. И. ШелухинРоссия
доктор технических наук, профессор, заведующий кафедрой «Информационная безопасность» Московского технического университета связи и информатики
С. Ю. Рыбаков
Россия
руководитель НОЦ «Информационная безопасность» Московского технического университета связи и информатики
А. В. Ванюшина
Россия
кандидат технических наук, доцент, доцент кафедры «Информационная безопасность» Московского технического университета связи и информатики
Список литературы
1. Park K., Willinger W. Self-Similar Network Traffic: An Overview // In: Self-Similar Network Traffic and Performance Evaluation. John Wiley & Sons, 2000. DOI:10.1002/047120644X.ch1
2. Шелухин О.И., Осин А.В., Смольский С.М. Самоподобие и фракталы. Телекоммуникационные приложения. М: Физматлит, 2008. C. 362. EDN:MVSWAB
3. Sheluhin O., Smolskiy S., Osin A. Self-Similar Processes in Telecommunications. John Wiley & Sons, 2007. 334 p.
4. Шелухин О.И. Сетевые аномалии. Обнаружение, локализация, прогнозирование. М: Горячая линия – Телеком, 2019. C. 448.
5. Sheluhin O., Kazhemskiy M. Influence Of Fractal Dimension Statistical Charachteristics On Quality Of Network Attacks Binary Classification // Proceedings of the 28th Conference of Open Innovations Association (FRUCT, Moscow, Russia, 27‒29 January 2021). Vol. 28. IEEE, 2021. PP. 407‒413. DOI:10.23919/FRUCT50888.2021.9347600. EDN:XMLZKW
6. Sheluhin O.I., Rybakov S.Y., Vanyushina A.V. Detection of Network Anomalies with the Method of Fixing Jumps of the Fractal Dimension in the Online Mode // Proceedings of the 28th Conference at Wave Electronics and Its Application in Information and Telecommunication Systems (WECONF, St. Petersburg, Russia, 30 May 2022 ‒ 03 June 2022). Vol. 5. IEEE, 2022. PP. 430‒435. DOI:10.1109/WECONF55058.2022.9803635. EDN:UEYFUM
7. Шелухин О.И., Рыбаков С.Ю., Ванюшина А.В. Влияние фрактальной размерности на качество классификации компьютерных атак методами машинного обучения // Наукоемкие технологии в космических исследованиях Земли. 2023. Т. 15. № 1. С. 57‒64. DOI:10.36724/2409-5419-2023-15-1-57-64. EDN:EVELAW
8. Котенко И.В., Саенко И.Б., Лаута О.С., Крибель А.М. Метод раннего обнаружения кибератак на основе интеграции фрактального анализа и статистических методов // Первая миля. 2021. № 6(98). С. 64‒71. DOI:10.22184/2070-8963.2021.98.6.64.70. EDN:KRIUAD
9. Перов Р.А., Лаута О.С., Крибель А.М., Федулов Ю.М. Комплексная методика обнаружения кибератак на основе интеграции фрактального анализа и статистических методов // Наукоемкие технологии в космических исследованиях Земли. 2022. Т. 14. № 2. С. 44‒51. DOI:10.36724/2409-5419-2022-14-2-44-51. EDN:ELALFA
10. Котенко И.В., Саенко И.Б., Лаута О.С., Крибель А.М. Методика обнаружения аномалий и кибератак на основе интеграции методов фрактального анализа и машинного обучения // Информатика и автоматизация. 2022. Т. 21. № 6. С. 1328–1358. DOI:10.15622/ia.21.6.9. EDN:IWILXQ
11. Карачанская Е.В., Соседова Н.И. Метод выявления аномалий сетевого трафика, основанный на его самоподобной структуре // Безопасность информационных технологий. 2019. Т. 26 № 1. С. 98‒110. EDN:YZELNB
12. Vieira F.H.T., Bianchi G.R., Lee L.L. A Network Traffic Prediction Approach Based on Multifractal Modeling // Journal of High Speed Networks. 2010. Vol. 17(2). PP. 83–96. DOI:10.3233/JHS-2010-0334
13. Зегжда П.Д, Лаврова Д.С., Штыркина А.А. Мультифрактальный анализ трафика магистральных сетей интернет для обнаружения атак отказа в обслуживании // Проблемы информационной безопасности. Компьютерные системы. 2018. № 2. С. 48–58. EDN:XTKTFZ
14. Лаврова Д.С., Зегжда Д.П., Зегжда П.Д., Штыркина А.А. Оценка киберустойчивости информационно-технологических систем на основе самоподобия // Материалы 25-й научно-технической конференции «Методы и технические средства обеспечения безопасности информации». СПб.: Изд-во Политехн. Ун-та, 2016. С. 101–104. EDN:YPUWMH
15. Штыркина А.А., Зегжда П.Д, Лаврова Д.С. Обнаружение аномалий в трафике магистральных сетей Интернет с использованием мультифрактального анализа // Материалы 27-й научно-технической конференции «Методы и технические средства обеспечения безопасности информации». СПб.: Изд-во Политехн. Ун-та, 2018. С. 14–15. EDN:YPUXQD
16. Шелухин О.И., Панкрушин А.В. Обнаружение аномальных выбросов в реальном масштабе времени методами мультифрактального анализа // Нелинейный мир. 2016. Т. 14. № 2. С. 72‒82. EDN:VTZNTH
17. Sheluhin O.I., Lukin I.Y. Network Traffic Anomalies Detection Using a Fixing Method of Multifractal Dimension Jumps in a Real-Time Mode // Automatic Control and Computer Sciences. 2018. Vol. 52. Iss. 5. PP. 421‒430. DOI:10.3103/S0146411618050115. EDN:OJQHKD
18. Riedi R.H., Crouse M.S., Ribeiro V.J., Baraniuk R. A multifractal wavelet model with application to network traffic // IEEE Transactions on Information Theory. 1999. Vol. 45. Iss. 3. PP. 992‒1018. DOI:10.1109/18.761337
19. Taqqu M.S., Teverovsky V., Willinger W. Is Network Traffic Self-Similar or Multifractal? // Fractals. 1997. Vol. 5. PP. 63‒73. DOI:10.1142/S0218348X97000073
20. Sheluhin O.I., Garmashev A.B., Aderemi A.A. Detection of teletraffic anomalies using multifractal analysis // International Journal of Advancements in Computing Technology. 2011. Vol. 3. Iss. 4. PP. 174‒182. DOI:10.4156/ijact.vol3.issue4.19. EDN:PDYTSP
21. Шелухин О.И. Мультифракталы: инфокоммуникационные приложения. М.: Горячая линия ‒ Телеком, 2011. 576 с. EDN:QMUYXJ
22. Mirsky Y., Doitshman T., Elovici Y., Shabtai A. Kitsune: an Ensemble of Autoencoders for Online Network Intrusion Detection // arXiv:1802.09089v2. 2018. DOI:10.48550/arXiv.1802.09089
23. Miyamoto K., Goto H., Ishibashi R., Han C., Ban T., Takahashi T., et al. Malicious Packet Classification Based on Neural Network Using Kitsune Features // Proceedings of the 2nd International Conference on Intelligent Systems and Pattern Recognition (ISPR 2022, Hammamet, Tunisia, 24–26 March 2022). Communications in Computer and Information Science. Vol. 1589. Cham: Springer, 2022. PP. 306‒314. DOI:10.1007/978-3-031-08277-1_25
24. Шелухин О.И., Рыбаков С.Ю. Статистические характеристики фрактальной размерности трафика IoT на примере набора данных Kitsune // Труды учебных заведений связи. 2023. Т. 9. № 5. С. 112‒119. DOI:10.31854/1813-324X-2023-9-5-112-119. EDN:YMSJRF
25. Шелухин О.И., Рыбаков С.Ю., Раковский Д.И. Классификация компьютерных атак с использованием мультифрактального спектра фрактальной размерности // Вопросы кибербезопасности. 2024. № 2(60) С.107‒119. DOI:10.21681/2311-3456-2024-2-107-119. EDN:GKOSBB
Рецензия
Для цитирования:
Шелухин О.И., Рыбаков С.Ю., Ванюшина А.В. Оценка характеристик мультифрактального спектра фрактальной размерности сетевого трафика и компьютерных атак в IоT. Труды учебных заведений связи. 2024;10(3):104-115. https://doi.org/10.31854/1813-324X-2024-10-3-104-115. EDN: KIRCNK
For citation:
Sheluhin O.I., Rybakov S.Y., Vanyushina A.V. Estimation of the Multifractal Spectrum Characteristics of Fractal Dimension of Network Traffic and Computer Attacks in IoT. Proceedings of Telecommunication Universities. 2024;10(3):104-115. (In Russ.) https://doi.org/10.31854/1813-324X-2024-10-3-104-115. EDN: KIRCNK