Preview

Proceedings of Telecommunication Universities

Advanced search
Cover Image

Analysis of Approaches to Optimization of V2X Systems: Clustering, Edge and Fog Computing

https://doi.org/10.31854/1813-324X-2024-10-3-7-22

EDN: TRWNON

Abstract

The review sets the task of analyzing existing solutions for communication systems based on Vehicle-to-Everything (V2X) technology using clustering and edge computing mechanisms in order to determine the conceptual model of the V2X system and the most significant indicators of quality of service (QoS), taking into account the application of the specified complex of technological solutions. The novelty of the work lies in the fact that the research is aimed at identifying the possibilities of integrating clustering mechanisms, edge and fog computing to determine optimal solutions for the deployment of roadside network infrastructure objects while maintaining high QoS indicators for communication equipment of this type. The result is that a scientifically based technological approach to constructing a conceptual model of a V2X system with specified QoS indicators has been proposed. Practical and theoretical relevance. The results obtained can be used in the design and deployment of V2X systems.

About the Authors

P. V. Plotnikov
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation


A. G. Vladyko
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation


References

1. Mueck M., Karls I. Networking Vehicles to Everything: Evolving Automotive Solutions. Walter de Gruyter; 2018. 233 p.

2. Chen S, Hu J., Zhao L., Zhao R., Fang J., Shi Y., Xu H. Cellular Vehicle-to-Everything (C-V2X). Wireless Networks. Springer; 2023. 416 p.

3. Wang J., Shao Y., Ge Y., Yu R. A survey of vehicle to everything (V2X) testing. Sensors. 2019;19(2):334. DOI:10.3390/s19020334

4. V2X White Paper. Next Generation Mobile Networks Ltd.: San Jose; 2018.

5. Cooper C., Franklin D., Ros M., Safaei F., Abolhasan M. A Comparative Survey of VANET Clustering Techniques. IEEE Communications Surveys and Tutorials. 2017;19(1):657–681. DOI:10.1109/COMST.2016.2611524

6. Bali R.S., Kumar N., Rodrigues J.J. Clustering in vehicular ad hoc networks: taxonomy, challenges and solutions. Vehicular Communications. 2014;1(3):134‒152. DOI:10.1016/j.vehcom.2014.05.004

7. Khan Z., Koubaa A., Fang S., Lee M.Y., Muhammad K. A Connectivity-Based Clustering Scheme for Intelligent Vehicles. Applied Sciences. 2021;11(5):2413. DOI:10.3390/app11052413

8. Abbas F., Liu G. Fan P., Khan Z. An efficient cluster based resource management scheme and its performance analysis for V2X networks. IEEE Access. 2020;8:87071–87082. DOI:10.1109/ACCESS.2020.2992591

9. Jameel F., Javed M.A., Zeadally S., Jantti R. Efficient Mining Cluster Selection for Blockchain-Based Cellular V2X Com-munications. IEEE Transactions on Intelligent Transportation Systems. 2021;22(7):4064–4072. DOI:10.1109/TITS.2020.3006176

10. Abbas F., Fan P., Khan Z. A novel low-latency V2V resource allocation scheme based on cellular V2X communications. IEEE Transactions on Intelligent Transportation Systems. 2019;20(6):2185–2197. DOI:10.1109/TITS.2018.2865173

11. Paramonov A., Khayyat M., Chistova N., Muthanna A., Elgendy I.A., Koucheryavy A., et al. An Efficient Method for choosing Digital Cluster Size in Ultralow Latency Networks. Wireless Communications and Mobile Computing. 2021;2021:9188658. DOI:10.1155/2021/9188658

12. Luoto P., Bennis M., Pirinen P., Samarakoon S., Horneman K., Latvaaho M. Vehicle clustering for improving enhanced LTE-V2X network performance. Proceedings of the European Conference on Networks and Communications, EuCNC, 12‒15 June 2017, Oulu, Finland. IEEE; 2017. DOI:10.1109/EuCNC.2017.7980735

13. AlNagar Y., Hosny S., El-Sherif A.A. Proactive Caching for Vehicular Ad hoc Networks Using The City Model. Proceedings of the Wireless Communications and Networking Conference Workshop, WCNCW, 15‒18 April 2019, Marrakech, Morocco. IEEE; 2019. DOI:10.1109/WCNCW.2019.8902590

14. Plotnikov P., Vladyko A. Numerical Analysis of the Mathematical Model of a Cluster V2X-System. Proceedings of Telecommunication Universities. 2023;9(1):14–23. (in Russ.) DOI:10.31854/1813-324X-2023-9-1-14-23. EDN:JDPDSD

15. Plotnikov P.V., Tambovtsev G.I., Vladyko A.G. Software Module for Modeling the interaction of Edge Devices in VANET with one- and two-channel connectivity. Patent RF, no. 2023681939, 06.10. 2023. (in Russ.)

16. Liu L., Chen C., Pei Q., Maharjan S., Zhang Y. Vehicular edge computing and networking: A survey. Mobile Networks and Applications. 2021;26:1145–1168. DOI:10.1007/s11036-020-01624-1

17. Fardad M., Muntean G.M., Tal I. A Blockchain-Enabled Vehicular Edge Computing Framework for Secure Performance-oriented V2X Service Delivery. IEEE Transactions on Vehicular Technology. 2024. DOI:10.1109/TVT.2024.3394150

18. Fan W., Su Y., Liu J., Li S., Huang W., Wu F., Liu Y. Joint Task Offloading and Resource Allocation for Vehicular Edge Computing Based on V2I and V2V Modes. IEEE Transactions on Intelligent Transportation Systems. 2023;24(4):4277–4292. DOI:10.1109/TITS.2022.3230430

19. Hou, P., Jiang, X., Lu, Z. et al. Joint computation offloading and resource allocation based on deep reinforcement learning in C-V2X edge computing. Applied Intelligence. 2023;53:22446–22466. DOI:10.1007/s10489-023-04637-x

20. Dai Y., Xu D., Maharjan S., Zhang Y., Joint Load Balancing and Offloading in Vehicular Edge Computing and Networks. IEEE Internet of Things Journal. 2019;6(3):4377–4387. DOI:10.1109/JIOT.2018.2876298

21. Guo H., Liu J., Ren J., Zhang Y. Intelligent Task Offloading in Vehicular Edge Computing Networks. IEEE Wireless Communications. 2020;27(4):126–132. DOI:10.1109/MWC.001.1900489

22. Cai G., Fan B., Dong Y., Li T., Wu Y., Zhang Y. Task-Efficiency Oriented V2X Communications: Digital Twin Meets Mobile Edge Computing. IEEE Wireless Communications. 2024;31(2):149–155. DOI:10.1109/MWC.012.2200465

23. Ye D., Yu R., Pan M., Han Z. Federated Learning in Vehicular Edge Computing: A Selective Model Aggregation Approach. IEEE Access. 2020;8:23920–23935. DOI:10.1109/ACCESS.2020.2968399

24. Luo Q., Li C., Luan T.H., Shi W. Collaborative Data Scheduling for Vehicular Edge Computing via Deep Reinforcement Learning. IEEE Internet of Things Journal. 2020;7(10):9637–9650. DOI:10.1109/JIOT.2020.2983660

25. Vladyko A., Tambovtsev G., Podgornaya E., Chelloug S.A., Alkanhel R., Plotnikov P. Cluster-Based Vehicle-to-Everything Modelwith a Shared Cache. Mathematics. 2023;11(13):3017. DOI:10.3390/math11133017

26. Bonomi F. Connected vehicles, the internet of things, and fog computing. Proceedings of the Eighth ACM International Workshop on VehiculAr Inter-NETworking, VANET 2011, Las Vegas, USA, 23 September 2011. 2011.

27. Khattak H.A., Islam S.U., Din I.U., Guizani M. Integrating fog computing with VANETs: A consumer perspective. IEEE Communications Standards Magazine. 2019;3(1):19–25. DOI:10.1109/MCOMSTD.2019.1800050

28. Sarrigiannis I., Contreras L.M., Ramantas K., Antonopoulos A., Verikoukis C. Fog-Enabled Scalable C-V2X Architecture for Distributed 5G and Beyond Applications. IEEE Network. 2020;34(5):120–126. DOI:10.1109/MNET.111.2000476

29. Alvi A.N., Javed M.A., Hasanat M.H.A., Khan M.B., et al. Intelligent task offloading in fog computing based vehicular networks. Applied Sciences. 2022;12(9):4521. DOI:10.3390/app12094521

30. Tonguz O.K., Viriyasitavat W. Cars as roadside units: A self-organizing network solution. IEEE Communications Magazine. 2013;51(12):112‒120. DOI:10.1109/MCOM.2013.6685766

31. Karunathilake T., Forster A. A survey on mobile road side units in VANETs. Vehicles. 2022;4(2):482‒500. DOI:10.3390/vehicles4020029

32. Guerna A., Bitam S., Calafate C.T. Roadside unit deployment in internet of vehicles systems: A survey. Sensors. 2022;22(9):3190. DOI:10.3390/s22093190

33. Ercan S., Ayaida M., Messai N. How mobile RSUs can enhance communications in VANETs? // Proceedings of the 6th International Conference on Wireless Networks and Mobile Communications, WINCOM, 16‒19 October 2018, Marrakesh, Morocco. IEEE; 2018. DOI:10.1109/WINCOM.2018.8629641

34. Lee J., Ahn S. Adaptive configuration of mobile roadside units for the cost-effective vehicular communication infrastructure. Wireless Communications and Mobile Computing. 2019;2019:6594084. DOI:10.1155/2019/6594084

35. Bitaghsir S.A., Kashipazha S., Dadlani A., Khonsari A. Social-aware mobile road side unit for content distribution in vehicular social networks. Proceedings of the Symposium on Computers and Communications, ISCC, 29 June 2019 ‒ 03 July 2019, Barcelona, Spain. IEEE; 2019. DOI:10.1109/ISCC47284.2019.8969669

36. Reis A.B., Sargento S., Tonguz O.K. Parked cars are excellent roadside units. IEEE Transactions on Intelligent Transportation Systems. 2017;18(9):2490–2502. DOI:10.1109/TITS.2017.2655498

37. Qin P., Fu Y., Feng X., Zhao X., Wang S., Zhou Z. Energy-efficient resource allocation for parked-cars-based cellular-V2V heterogeneous networks. IEEE Internet of Things Journal. 2022;9(4):3046‒3061. DOI:10.1109/JIOT.2021.3094903

38. Evariste T., Kasakula W., Rwigema J., Datta R. Optimal exploitation of on-street parked vehicles as roadside gateways for social IoV ‒ a case of Kigali City. Journal of Open Innovation: Technology, Market, and Complexity. 2020;6(3):73. DOI:10.3390/joitmc6030073

39. Li G., Ma M., Liu C., Shu Y. Routing in taxi and public transport based heterogeneous vehicular networks. Proceedings of the IEEE Region 10 Conference, TENCON, 22‒25 November 2016, Singapore, Singapore. IEEE; 2019. p.1863‒1866. DOI:10.1109/TENCON.2016.7848344

40. Jiang X., Du D.H.C. Bus-VANET: A bus vehicular network integrated with traffic infrastructure. IEEE Intelligent Transportation Systems Magazine. 2015;7(2):47‒57. DOI:10.1109/MITS.2015.2408137

41. Heo J., Kang B., Yang J.M., Paek J., Bahk S. Performance-cost tradeoff of using mobile roadside units for V2X communication. IEEE Transactions on Vehicular Technology. 2019;68(9):9049‒9059. DOI:10.1109/TVT.2019.2925849

42. Kim D., Velasco Y., Wang W., Uma R.N., Hussain R., Lee S. A new comprehensive RSU installation strategy for cost-efficient VANET deployment. IEEE Transactions on Vehicular Technology. 2016;66(5):4200–4211. DOI:10.1109/TVT.2016.2598253

43. Ni Y., Zhao C., Cai L. Hybrid RSU management in cybertwin-IoV for temporal and spatial service coverage. IEEE Transactions on Vehicular Technology. 2022;71(5):4596‒4606. DOI:10.1109/TVT.2021.3138749

44. Plotnikov P.V., Tambovtsev G.I., Vladyko A.G. Performance Evaluation of V2X Model with a Mobile Road Side Units. Proceedings of the Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex, TIRVED, 15‒17 No-vember 2023, Moscow, Russian Federation. IEEE; 2023. DOI:10.1109/TIRVED58506.2023.10332617

45. Plotnikov P.V., Tambovtsev G.I., Vladyko A.G. Numerical Analysis of roadside Units Deployment Models in V2X Communication System. Proceedings of the Systems of Signals Generating and Processing in the Field of on Board Communication, 12‒14 March 2024, Moscow, Russian Federation. IEEE; 2024. DOI:10.1109/IEEECONF60226.2024.10496720


Review

For citations:


Plotnikov P.V., Vladyko A.G. Analysis of Approaches to Optimization of V2X Systems: Clustering, Edge and Fog Computing. Proceedings of Telecommunication Universities. 2024;10(3):7-22. (In Russ.) https://doi.org/10.31854/1813-324X-2024-10-3-7-22. EDN: TRWNON

Views: 315


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)