Preview

Proceedings of Telecommunication Universities

Advanced search
Cover Image

Methods of Traffic Distribution in a Heterogeneous High-Density Internet of Things Network

https://doi.org/10.31854/1813-324X-2024-10-2-67-74

EDN: RTNVEU

Abstract

The paper presents a model and method for distributing traffic in a heterogeneous Internet of Things (IoT) network built on the basis of complex communication channels consisting of several subchannels using various signal transmission technologies, for example, radio, optical and acoustic. The developed methods for distributing traffic across subchannels of a heterogeneous IoT network make it possible to solve the problem of increasing network efficiency through the use of heterogeneous resources. The result of the study is methods of traffic distribution in the form of optimization problems for various solution search strategies. The results obtained can be used to build heterogeneous IoT networks and networks of robotic systems.

About the Authors

A. Koucheryavy
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation


D. Okuneva
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation


A. Paramonov
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation


F. Huang
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation


References

1. Kirichek R.V., Paramonov A.I., Prokopiev A.V., Koucheryavy A.E. The Investigation Evolution in the Wireless Sensor Networks Area. Telecom IT. 2014;2(4):29‒41. (in Russ.) EDN:TKSXPT

2. Hammoudeh M., Newman R. Information extraction from sensor networks using the Watershed transform algorithm. Information Fusion. 2015;22;39‒49. DOI:10.1016/j.inffus.2013.07.001

3. Basha A.R. A Review on Wireless Sensor Networks: Routing. Wireless Personal Communications. 2022;125(1):897‒937. DOI:10.1007/s11277-022-09583-4

4. Madakam S., Ramaswamy R., Tripathi S. Internet of Things (IoT): A Literature Review. Journal of Computer and Communications. 2015;3(5):164‒173. DOI:10.4236/jcc.2015.35021

5. Fadel E., Gungor V.C., Nassef L., Akkari N., Malik M.G.A., Almasri S., et al. A survey on wireless sensor networks for smart grid. Computer Communications. 2015;71:22‒33. DOI:10.1016/j.comcom.2015.09.006

6. Laghari A.A., Wu K., Laghari R.A. Retraction Note: A Review and State of Art of Internet of Things (IoT). Archives of Computational Methods in Engineering. 2023;30:5105. DOI:10.1007/s11831-023-09985-y

7. Gulati K., Boddu R.S.K., Kapila D., Bangare S.L., Chandnani N., Saravanan G. A review paper on wireless sensor network techniques in Internet of Things (IoT). Materials Today: Proceedings. 2022;51(Part 1):161‒165. DOI:10.1016/j.matpr.2021.05.067

8. Sobouti M.J., Rahimi Z., Mohajerzadeh A.H., Hosseini S.S.A., Ghanbari R., Marquez-Barja J.M., et al. Efficient Deployment of Small Cell Base Stations Mounted on Unmanned Aerial Vehicles for the Internet of Things Infrastructure. IEEE Sensors Journal. 2020;20(13):7460‒7471.DOI:10.1109/JSEN.2020.2973320

9. Paramonov A., Bushelenkov S. Analysis of Methods to Increase the Efficiency of IoT Networks. Telecom IT. 2022;10(2):36‒52. (in Russ.) DOI:10.31854/2307-1303-2022-10-2-36-52. EDN:JNZPDL

10. Elagin V.S., Vasin A.S. Analysis of Network Resource Scaling Models in 5G Network. T-Comm. 2023;17(5):32‒41. (in Russ.) DOI:10.36724/2072-8735-2023-17-5-32-41. EDN:UEIDEK

11. Kartashevsky I.V., Volkov A.N., Kirichek R.V. Analysis of the Average Waiting Time in the Queuing System While Processing the Correlated Traffic. Electrosvyaz. 2019;3:41‒50. (in Russ.) EDN:ZABEST

12. Kirichek R., Kulik V. Industrial Internet of Things Traffic Research and Generation. Proceedings of Telecommunication Universities. 2019;5(3):27‒36. (In Russ.) DOI:10.31854/1813-324X-2019-5-3-27-36. EDN:JQBTYU

13. Liao Z., Han G., Wang H., Liu L. Multistation-Based Collaborative Charging Strategy for High-Density Low-Power Sensing Nodes in Industrial Internet of Things. IEEE Internet of Things Journal. 2021;8(9):7575‒7588. DOI:10.1109/JIOT.2020.3039556

14. Shen X., Liao W., Yin Q. A Novel Wireless Resource Management for the 6G-Enabled High-Density Internet of Things. IEEE Wireless Communications. 2022;29(1):32‒39. DOI:10.1109/MWC.003.00311

15. Chen N., Okada M. Toward 6G Internet of Things and the Convergence With RoF System. IEEE Internet of Things Journal. 2021;8(11):8719‒8733. DOI:10.1109/JIOT.2020.3047613

16. Tonkikh E.V., Paramonov A.I., Koucheryavy A.E. Analysis of Wireless High-Density IoT Network. Electrosvyaz. 2020;1:44‒48. (in Russ.) DOI:10.34832/ELSV.2020.2.1.006. EDN:IWAHZO

17. Tonkikh E.V. The Dense of Devices Analysis for 5G Networks. Telecom IT. 2020;8(1):22–27. (in Russ.) DOI:10.31854/ 2307-1303-2020-8-1-22-27. EDN:PBSLMR

18. Muthanna A.S.A. A Model for Integrating Edge Computing into an Air-Ground Network Structure and Offloading Traffic Method for High and Ultra-High Densities Internet of Things Networks. Proceedings of Telecommunication Universities. 2023;9(3):42‒59. DOI:10.31854/1813-324X-2023-9-3-42-59. EDN:SBAHAR

19. Bushelenkov S.N., Paramonov A.I. Route Selection Method for High-Density Wireless IoT Network. Electrosvyaz. 2021;12:14‒20. (in Russ.) DOI:10.34832/ELSV.2021.25.12.001. EDN:YJVLGZ

20. GOST R 53111-2008. Stability of the functioning of the public communication network. Requirements and verification methods. Moscow: Standartinform Publ.; 2009. (in Russ.)

21. GOST 27.002-89. Industrial product dependability. General concepts. Terms and definitions. (in Russ.)

22. Okuneva D. Research of a wireless sensor network with multimodal distribution of nodes on a plane. Modern Science: actual problems of theory and practice. Series: Natural and Technical Sciences. 2017;1:9‒13. (in Russ.) EDN:XXBSJF

23. Nurilloev I.N., Paramonov A.I. Effective Connectivity Parameter of the Wireless Sensor Network. Electrosvyaz. 2018;3: 68‒74. (in Russ.) EDN:YSIQIF

24. Chernorutsky I.G. Optimization Methods. Computer Techologies. St. Petersburg: BHV-Petersburg Publ.; 2011. 384 p. (in Russ.)

25. Wang N., Ho K. H., Pavlou G., Howarth M. A survey of routing optimization for Internet traffic engineering. IEEE Communications Surveys & Tutorials. 2008;10(1):36–56. DOI:10.1109/COMST.2008.4483669

26. Singh M., Baranwal G. Quality of Service (QoS) in Internet of Things. Proceedings of the 3rd International Conference on Internet of Things: Intelligent Innovation and Usage, IoT-SIU, 23‒24 February 2018, Bhimtal, India. IEEE; 2018. DOI:10.1109/IoT-SIU.2018.8519862

27. Busetta C., Noor B., Cousin A., Mungla H. QoS in IoT Networks Based on Link Quality Prediction. Proceedings of the International Conference on Communications, ICC 2021, 14‒23 June 2021, Montreal, Canada. IEEE; 2021. DOI:10.1109/ICC42927.2021.9500396


Review

For citations:


Koucheryavy A., Okuneva D., Paramonov A., Huang F. Methods of Traffic Distribution in a Heterogeneous High-Density Internet of Things Network. Proceedings of Telecommunication Universities. 2024;10(2):67-74. (In Russ.) https://doi.org/10.31854/1813-324X-2024-10-2-67-74. EDN: RTNVEU

Views: 344


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)