
A Research of Intermodulation Components in Laser Vibrometers for Precise Measurement of Oscillations
https://doi.org/10.31854/1813-324X-2024-10-2-57-66
EDN: YHIRMC
Abstract
This paper presents the results of theoretical research of signals of laser vibrometers, with the surface of the object of interest orthogonal to the direction of the beam. The article shows that the Michelson interferometer based vibrometer may yield erroneous results when measuring the amplitude of oscillations. The errors arise due to the phase shift between the interfering beams, which affects the measurement of the absolute value of surface shift. The article presents theoretical analysis of the spectra of the output signals of interferometers of various designs. For the Michelson interferometer based vibrometer, the algorithm for the measurement of frequencies and amplitudes by reading the oscillograms of interference signals suggests that the amplitude be much larger than the laser's wavelength. It is proved that in this case the result does not depend on the mismatch in phases between the beamsplitter and each mirror. The output signal of the heterodyne interferometer has been analyzed. The property of spectral components of being independent of the beams' phases helps eliminate errors when calculating the amplitude. A special design of the Michelson interferometer is proposed, where the beam's frequency is shifted by using the optical modulator that operates in the Bragg diffraction mode.
About the Authors
Е. KravetsRussian Federation
E. Semenova
Russian Federation
References
1. Fraiden D. Modern sensors. Мoscow: Technosfera Publ.; 2005. 592 p. (in Russ.)
2. Nikolaenko A., Lvov A., Lvov P., IUrkov N. Analysis of non-contact methods for measuring linear displacements and vibrations. Transactions of the International Symposium on Reliability and Quality, 21–31 may 2018, Penza, Russia, vol.2. Penza: PSU Publ.; 2018. p.88–91. (in Russ.) EDN:YAFFNZ
3. Stulenkov A.V., Korotin P.I., Suvorov A.S. New applications of laser vibrometry. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2020;84(6):824–828. (in Russ.) DOI:10.31857/S0367676520060290. EDN:JWPUFG
4. Zastrogin Yu.F. Control of motion parameters using lasers. Moscow: Mashinostroenie Publ.; 1986. 272 p. (in Russ.)
5. Puriaev D.T. Measurement of distances and linear displacements by two-beam laser interferometry method. Moscow: Mashinostroenie Publ.; 1999. 212 p. (in Russ.)
6. Volkovets A., Rudenko D., Gusinskii A., Kostrikin A. Radio wave non-contact method for measuring motion and vibration parameters. Doklady BGUIR. 2007;4(20):58–64. (in Russ.)
7. Born M., Volf E. Fundamentals of optics. Moscow: Nauka Publ.; 1973. 719 p. (in Russ.)
8. Osipov M.N., Popov M.A. Measurementsofsmalldynamicdisplacements by Michelson interferometer with spherical wave fronts. Computer optics. 2007;31(4):55−57. (in Russ.) EDN:IUDQMF
9. Glebus I.S., Makarov S.N. Fibre optical vibrometer based on the michelson interferometer. Interekspo Geo-Sibir. 2015;5(2):28–33. (in Russ.) EDN:TWPCIX
10. Bronshtein I.N Semendiaev K.A. Math Reference. St. Petersburg: Lan Publ.; 2010. 608 p. (in Russ.)
11. Gorbatenko B., Liakin D., Perepelitsyna O., Riabukho V. Optical circuits and statistical signal characteristics of speckle motion interferometers. Computer Optics. 2009;3(33);268–280. (in Russ.) EDN:KVCQJB
12. Gryaznov N.A., Goryachkin D.A., Sosnov E.N., Нarlamov V.V. Adjusting the arm lengths of the Michelson interferometer. Nauchnoe Priborostroenie. 2019;29(3):41–46. (in Russ.) DOI:10.18358/np-29-3-i4146. EDN:MIFWOZ
13. Griaznov A., Goriachkin D., Kupreniuk V., Sosnov E., Alekseev V. Passive stabilization of the Michelson interferometer. Nauchnoe Priborostroenie. 2020;20(4):63–74. (in Russ.) DOI:10.18358/np-29-3-i4146. EDN:MIFWOZ
14. Osipov M., Popov M., Popova T. Output signal behavior in the measurement system based on optoelectronic Michelson interferometer. Polzunovskiy Vestnik. 2011;(3-1):38–41. (in Russ.) EDN:OHFYIV
15. Plotnikov M.Yu., Volkov A.V. Method of Measuring Phase Signal of Double-Beam Fibre-Optic Interferometer. Patent RF, no. 2719635 C1, 21.04.2020. (in Russ.) EDN:DOYETB
16. Kirieenkov A.Yu., Alejnik A.S., Plotnikov M.Yu.Arms Length Difference Determining Method in the Double-Beam Fiber-Optical Interferometer. Patent RF, no. 2678708 C1. 31.01.2019. (in Russ.) EDN:HZSHRC
17. Zapevalov A.S., Burdyugov V.M. Method for Remote Determination of Vibration Amplitude. Patent RF, no. 2710098 C1, 24.12.2019. (in Russ.) EDN:GLCCVD
18. Palto S.P., Geivandov A. R., Plato V.S. Michelson Interferometer with Oscillating Mirrors and Fourier Spectrometer Based Thereon. Patent RF, no. 2580211 С2, 10.04.2016. (in Russ.)
19. Atavin V., Hudyakov Yu., Yurchik E. Measuring small vibration amplitudes with a laser vibrometer. Мeasurement Techniques. 1999;11:29–32. (in Russ.)
20. Atavin V.G., Mokhnatov A.A., Hudyakov Yu.V. Procedure Measuring Amplitudesof Vibrations. Patent RF, no. 2217706 C2. 27.11.2003. (in Russ.) EDN:SZGTMY
21. Kowarsch R., Te R., Rembe C. Laser-Doppler vibrometer microscope with variable heterodyne carrier. Journal of Physics Conference Series. 2018;1149(1):012016.
22. Kostomin M., Titov A., Garipov V. Measurement of motion velocity and vibration parameters of objects by hetero-bin method. Science and Education of Bauman MSTU. 2015;12:110–118. DOI:10.7463/1215.0828437. (in Russ.) EDN:VDRHXN
23. Kapezin S.V., Bazykin S.N., Bazykina N.A., Samokhina K.S. Lazer measuring systems with space-time scan of interference field. University proceedings. Volga region. Technical sciences. 2015;2(34):156–161. (in Russ.) EDN:UISFLR
24. Bazykin S.N. Information-measuring systems for measuring linear displacements. Modern high technologies. 2016;9: 373–377. (in Russ.) EDN:WNEURN
25. Balakshii V.I., Parygin V.N., Chirkov L.E. Physical foundations of acousto-optics. Moscow: Radio i Svyaz Publ.; 1985. 278 p. (in Russ.)
Review
For citations:
Kravets Е., Semenova E. A Research of Intermodulation Components in Laser Vibrometers for Precise Measurement of Oscillations. Proceedings of Telecommunication Universities. 2024;10(2):57-66. (In Russ.) https://doi.org/10.31854/1813-324X-2024-10-2-57-66. EDN: YHIRMC