
Noise Immunity of Binary Chirp Signals
https://doi.org/10.31854/1813-324X-2024-10-2-24-33
EDN: GIWAFM
Abstract
The results of a study of the noise immunity of receiving signals with linear frequency modulation in telecommunication information transmission systems are considered. Analytical expressions for the synthesis of binary signals by linear frequency modulation with control parameters are obtained. The dependence of the structure of linear frequency modulation signals on the shaping parameters has been studied. The optimization problem of finding the maximum value of the Euclidean distance for linear frequency modulation signals of a binary structure has been solved by modeling. Differences have been established in the noise immunity of receiving linear frequency modulation signals in relation to the binary structures of opposite and orthogonal signals. Diagrams of time and spectral fragments of linear frequency modulation signals are presented, explaining the essence of the research results. Graphs are presented for comparative assessment of the noise immunity of receiving binary signals of various structures in terms of the bit error probability as a function of the signal-to-noise ratio in the channel. The essence of correlation processing of signals with a large base is revealed.
About the Authors
S. Dvornikov-jr.Russian Federation
S. Selivanov
Russian Federation
S. Dvornikov
Russian Federation
References
1. Dorokhov S.V., Mikhaylov V.E. Method for Calculating Cross-Correlation Coefficient Between Two Random Signals in the Presence of Etheric Interference. T-Comm. 2021;15(12):17‒23. (in Russ.) DOI:10.36724/2072-8735-2021-15-12-17-23. EDN:EDSFRD
2. Solodun K.D. Blinking Jamming in Individual-Mutual Protection of Aircraft. Radioengineering. 2023;87(10):28‒35. (in Russ.) DOI:10.18127/j00338486-202310-03. EDN:SFTXIX
3. Dvornikov S.V., Pogorelov A.A., Voznyuk M.A., Ivanov R.V. Assessment of the simulation resistance of control channels with frequency modulation. Information and space. 2016;1:32‒35. (in Russ.) EDN VPQCFF
4. Ivanov D.V., Ivanov V.A., Ryabova M.I., Belgibaev R.R., Ovchinnikov V.V., Chernyadyev A.V. Development of Methods for Spectral Monitoring of HF Interferences for Assessing the Availability of Ionospheric Radio Channels, Considering the Features of the Varying Spectrum. Radioengineering. 2023;87(12):64‒77. (in Russ.) DOI:10.18127/j00338486-202312-08. EDN:XABCVS
5. Popov O.V., Tumashov A.V., Borisov G.N., Korovin K.O. Method for Calculating the Radius of an Electromagnetic Availability Zone Based on a Surface Wave Source with a Given Spectrum Density of an Isotropically Emitted Signal. Proceedings of Telecommunication Universities. 2022;8(3):72‒79. (in Russ.) DOI:10.31854/1813-324X-2022-8-3-72-79. EDN:MGHEIF
6. Ashimov N.M., Vasin A.S., Biryukov A.N., Kuzmishchev P.G. Noise Immunity and Interference Security of Control Radio Links Operating with Phase-Shift Keyed Broadband Signals. Electromagnetic Waves and Electronic Systems. 2021;26(2):36‒43.
7. (in Russ.) DOI:10.18127/j15604128-202102-04. EDN:OZTIWF
8. Ivanov D.V., Ivanov V.A., Ryabova N.V., Vedernikova Yu.A., Chernov A.A. Synchronization of Radio Engineering Communication Systems and Sounding of Ionospheric High-Frequency Radio Channels. Radioengineering. 2023;87(12):6‒16. DOI:10.18127/j00338486-202312-02. EDN:KKAIFD
9. Khvostunov Yu.S. Proposals for the Construction of the Analogue Part of the SDR Radio Receivers of the HF Radio Network with FHSS. Means of Communication Equipment. 2022;1(157):35‒44. (in Russ.) EDN:MRGPVL
10. Dvornikov S.V., Dvornikov S.S., Zheglov K.D. Proactive Suitability Control of Radio Channels in IFB Mode. T-Comm. 2022;16(11):15‒20. (in Russ.) DOI:10.36724/2072-8735-2022-16-11-15-20. EDN:YLWCFH
11. Zakharov V.L., Vitomsky E.V. Methods for Constructing Interference-Protected Frequencyfrequency Interference Signals. Izvestiya Instituta inzhenernoy phiziki. 2019;4(54):50‒54. (in Russ.) EDN:XZOGPW
12. Prokhorov V.E. Comparative Analysis of Two Schemes Efficiency of Signals Pickup with Frequency-Hopping Spread Spetrum. Teoriya i tekhnika radiosvyazi. 2019;1:74‒84. (in Russ.) EDN:FMJPIA
13. Makarenko S.I., Ivanov M.S., Popov S.A. Noise Immunity of Communication Systems with Pseudo-Random Tuning of Operating Frequency. St. Petersburg: Svoe izdatelstvo Publ.; 2013. 166 p. EDN:QKNPYL
14. Filippov B.I. The choice of signals for hydroacoustic navigation system of transformation underwater apparatus to docking module. T-Comm. 2021;15(6):56‒64. DOI:10.36724/2072-8735-2021-15-6-56-64. EDN:DPDQQX
15. Bolelov E.A., Kozlov A.I., Romanenko N.M. Affine Design as a Tool for Separating Signals from Radar Targets. Radiotekhnicheskie i telekommunikacionnye sistemy. 2023;1(49):22‒32. DOI:10.24412/2221-2574-2023-1-22-32. (in Russ.) EDN:EJBZLN
16. Dvornikov S.V., Ovchinnikov G.R., Balykov A.A. Software Simulator of the Ionospheric Radio Channel of the Decameter Range. Information and space. 2019;3:6‒12. (in Russ.) EDN:CGVGIJ
17. Zotov K.N., Zhdanov R.R. On the Applicability of Interference in Cellular Networks to Create A Secure Communication Channel. The Herald of the Siberian State University of Telecommunications and Information Science. 2020;3(51):90‒100. (in Russ.) EDN:GJEDGS
18. Goldsmith A. Wireless Communications. Cambridge University Press; 2005.
19. Dvornikov S.V., Dvornikov S.S., Pshenichnikov A.V. Analysis of Frequency Resource for FHSS Mode. Information and Control Systems. 2019;4(101):62‒68. (in Russ.) DOI:10.31799/1684-8853-2019-4-62-68. EDN:VUYYFO
20. Pavlov S.V., Dokuchaev V.A., Maklachkova V.V. Improving the Stability of Satellite Synchronization of Single-Frequency Television Transmitters Under the Influence of Interference. Systems of Signal Synchronization, Generating and Processing in Telecommunications. 2022;5(1):248‒253. DOI:10.1109/SYNCHROINFO55067.2022.9840977
21. Dvornikov S.V., Dvornikov S.S., Ivanov R.V., Gulidov A.A., Chikhonadskikh A.P. Protection against structural interference of frequency-shift keying radio channels. Information Technologies. 2017;23(3):193‒198. (in Russ.) EDN:YHCWCR
22. Fokin G.A. Location Aware Beamforming in Millimeter-Wave Band Ultra-Dense Radio Access Networks. Part 1. Model of Two Links. Proceedings of Telecommunication Universities. 2023;9(4):44‒63. (in Russ.) DOI:10.31854/1813-324X-2023-9-4-44-63. EDN:DIEAKU
23. Yang K., Wu Zh., Guo X., Wu J., Cao Y., Qu T., et al. Estimation of co-channel interference between cities caused by ducting and turbulence. Chinese Physics B. 2022;31(2):024102. DOI:10.1088/1674-1056/ac339c
24. Qi L., Shen Zh., Guo Q., Wang Y., Mykola K. Chirp Rates Estimation for Multiple LFM Signals by DPT–SVD. Circuits, Systems, and Signal Processing. 2023;42(5):2804‒2827. DOI:10.1007/s00034-022-02225-x
25. Laurent N., Colominas M.A., Meignen S. On Local Chirp Rate Estimation in Noisy Multicomponent Signals: With an Application to Mode Reconstruction. IEEE Transactions on Signal Processing. 2022;70:3429‒3440. DOI:10.1109/tsp.2022.3186832
26. Dong W.X., Lai Yu.Yu., Hu J. Detecting spatial chirp signals by Luneburg lens based transformation medium. Optics Express. 2022;30(6):9773. DOI:10.1364/oe.453937. EDN:FDDCCI
27. Chan H.N., Podstrigaev A.S., Nguyen Ch.N. Algorithms for Analyzing Chirp Signals Based on Time- Frequency Analy-sis. Proceedings of the XXVIII International Scientific and Technical Conference dedicated to the memory of B.Ya. Osipova on Radar, Navigation, Communications, 27–29 September 2022, Voronezh, Russia, vol.2. Voronezh: Voronezh State University Publ.; 2022. p.371‒378. (in Russ.) EDN:XYVWID
28. Dvornikov S.V., Kuznetsov D.A., Kozhevnikov D.A., Pshenichnikov A.V., Manaenko S.S. Theoretical Basis of Synthesis Signals Ensemble Biorthogonality with the Enhanced Noise Immunity. Voprosy radioelektroniki. Seriya: Tekhnika televideniya. 2015;5:16‒20. (in Russ.) EDN:UMOIYB
29. Golubicic Z.T., Simic S.M., Zejak A.J., Reljic B.M., Maric S. High speed target tracking radar system based on the use of BPSK signal and digital Doppler shift compensation. Military Technical Courier. 2022;70(2):357‒371. DOI:10.5937/vojtehg70-36589
30. Geng Ch.Q., Kuan H.Ju., Luo L.W. Inverse-chirp imprint of gravitational wave signals in scalar tensor theory. The European Physical Journal C. 2020;80(8):1‒6. DOI:10.1140/epjc/s10052-020-8359-y
31. Alsharef M., Hamed A., Rao R.K. Error Rate Performance of Digital Chirp Communication System over Fading Channels. Proceedings of the World Congress on Engineering and Computer Science, WCECS, 21‒23 October 2015, San Francisco, USA. URL: https://www.researchgate.net/publication/326782880_Error_Rate_Performance_of_Digital_Chirp_Communication_System_over_Fading_Channels [Accessed 01.04.2024]
32. Alsharef M., Rao R.K. Multi-mode multi-level continuous phase chirp modulation: Coherent detection. Proceedings of the 29th Annual IEEE Canadian Conference on Electrical and Computer Engineering, 15‒18 May 2016, Vancouver, Canada. IEEE; 2016. DOI:10.1109/CCECE.2016.7726777
33. Dvornikov S.V., Kudryavtsev A.M. Theoretical Foundations of Time-Frequency Analysis of Short-Term Signals. St. Petersburg: Military Academy of Communications Publ.; 2010. 240 p. (in Russ.) EDN:QMUYKH
34. Shelikhova T.S., Drozdova T.S. The Analysis of the Usage Efficiency of the Time-Frequency Resources for Different 5G NR Coreset Configuration Settings. The Herald of the Siberian State University of Telecommunications and Information Science. 2023;17(4):97‒108. DOI:10.55648/1998-6920-2023-17-4-97-108. EDN:JASPNV
35. Dvornikov S.V. Theoretical Foundations of the Synthesis of Bilinear Energy Distributions of Non-Stationary Processes in Frequency-Temporary Space (Review). Proceedings of Telecommunication Universities. 2018;4(1):47‒60. (in Russ.) EDN:YUZUOE
36. Grishin V.G., Grishin O.V., Nikultsev V.S., Gultyaeva V.V., Zinchenko M.I., Uryumtsev D.Yu. Time–Frequency Analysis of Variability in External Respiration and Heart Rate in Humans during Exercise. Biophysics. 2022;67(4):755‒762. DOI:10.31857/S0006302922040147. EDN:IUKFYZ
Review
For citations:
Dvornikov-jr. S., Selivanov S., Dvornikov S. Noise Immunity of Binary Chirp Signals. Proceedings of Telecommunication Universities. 2024;10(2):24-33. (In Russ.) https://doi.org/10.31854/1813-324X-2024-10-2-24-33. EDN: GIWAFM