
No-Reference Image Quality Assessment Algorithm
https://doi.org/10.31854/1813-324X-2024-10-2-16-23
EDN: TTPABW
Abstract
The presented article focuses on the development of a local image quality assessment algorithm, specifically designed for analyzing contrast and overall visual data quality. The proposed algorithm aims to enhance the efficiency of image assessment, particularly in conditions of low contrast and the presence of various types of noise. The algorithm's methodology takes into account spectral ranges and provides precise local contrast assessment, making it applicable to a broad spectrum of tasks related to image analysis and enhancement. The developed approach has the potential to improve the quality of visual data by supporting crucial aspects of contrast perception and overall image quality.
About the Authors
I. GritskevichRussian Federation
A. Gogol
Russian Federation
References
1. Gritskevich I.Y., Erganzhiev N.A. The Adaptive Contrast Enhancement Algorithm Based on Local Characteristic of the Scene Image. Proceedings of the Vth International Scientific and Technical Conference on Actual Problems of Radio and Film Technologies, 24−25 November 2020, St. Petersburg, Russia. St. Petersburg: St. Petersburg State Institute of Cinema and Tele-vision; 2021. p.36−40. (in Russ.) EDN:DNBFGB
2. Gonzalez R., Woods R. Digital Image Processing. Moscow: Tekhnosfera Publ.; 2006. 1072 p. (in Russ.)
3. Krasilnikov N.N. Digital Processing of 2D and 3D Images. St. Petersburg: BHV-Petersburg Publ.; 2011. 608 p. (in Russ.)
4. Siforov V.I., Yaroslavsky L.P. Adaptive Methods of Image Processing. Moscow: Nauka Publ.; 1988. 248 p. (in Russ.)
5. Nacharov D.V. Image Contrast Enhancement by Means of Modified S-Shaped Intensity Transrofm. Bulletin of Voronezh State Technical University. 2023;19(2):94–102. (in Russ.) DOI:10.36622/VSTU.2023.19.2.014. EDN:XEUQGW
6. Umbitaliev A.A., Tsitsulin A.K., Levko G.V., Pyatkov V.V., Kuzichkin A.V., Dvornikov S.V., et al. Theory and Practice of Space Television. St. Petersburg: JSC "Research Institute of Television", 2017. 368 p. (in Russ.)
7. Suckling J., Parker J., Dance D., Astley S., Hutt I., Boggis C., et al. The mammographic Image Analysis Society Digital Mammogram Database. Exerpta Medica. International Congress Series. 1994;1069:375−378.
8. Van Ginneken B., Romeny B.M.T.H. Computer-aided diagnosis in chest radiography: a survey. IEEE Transactions on Mdical Imaging. 1998;20(12):1228−1241. DOI:10.1109/42.974918
9. Karssemeijer N., Otten J.D.M., Rijken H., Holland R. Computer aided detection of masses in mammograms as decision support. IEEE Transactions on Medical Imaging. 1993;12(4):608−615.
10. Wang Z., Wu G., Bovik A.C. Reduced and No-Reference Image Quality Assessment. IEEE Signal Processing Magazine. 2011;28(6):29−40. DOI:10.1109/MSP.2011.942471
11. Seshadrinathan K., Bovik A.C. Video Quality Assessment. In: Essential Guide to Video Processing. New York: Academic; 2009.
12. Bovik A.C., Wang Z. Modern Image Quality Assessment. New York: Morgan and Claypool; 2006.
13. Sheikh H.R., Bovik A.C., De Veciana G. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing. 2005;14(12):2117–2128. DOI:10.1109/TIP.2005.859389
14. Rec. ITU-R BT.500-11 Methodology for subjective assessment of the quality of television pictures. 2002.
Review
For citations:
Gritskevich I., Gogol A. No-Reference Image Quality Assessment Algorithm. Proceedings of Telecommunication Universities. 2024;10(2):16-23. (In Russ.) https://doi.org/10.31854/1813-324X-2024-10-2-16-23. EDN: TTPABW