Preview

Труды учебных заведений связи

Расширенный поиск
Изображение на обложке

Анализ сквозной задержки в транспортном сегменте Fronthaul сетей 4G/5G на базе технологии TSN

https://doi.org/10.31854/1813-324X-2024-10-1-73-84

EDN: SJWTLO

Аннотация

Одной из характерных особенностей построения мобильных сетей 4G/5G является пространственное разделение функциональных блоков. Для связи этих блоков используются соответствующие сегменты транспортной сети xHaul. Одним из них является передний сегмент Fronthaul, который соединяет удаленное радиооборудование с оборудованием их управления. Потоки данных стандартных радиоинтерфейсов CPRI/eCPRI в этом сегменте предъявляют строгие требования к качеству обслуживания и прежде всего к задержкам. Для удовлетворения этих требований было предложено использовать в сегменте Fronthaul мостовую сеть Ethernet на базе технологии чувствительных ко времени сетей TSN (аббр. от англ. Time Sensitive Networking), которая обеспечивает детерминированные задержки, надежную доставку пакетов и высокую точность синхронизации узлов в сети. В стандарте IEEE 802.1CM описаны профили сетей TSN, определяющие функции, опции, конфигурации, значения по умолчанию, протоколы и процедуры мостов, станций и локальных сетей, необходимые для построения транспортного сегмента Fronthaul. В статье представлена методика определения максимальных сквозных задержек трафика стандартных радиоинтерфейсов CPRI/eCPRI в сегменте Fronthaul сетей 4G/5G, построенном на базе технологии TSN, в соответствии с требованиями стандарта IEEE 802.1CM. Выделены две основные компоненты сквозной задержки – задержки в мостах TSN и задержки в каналах хEthernet. Для высокоприоритетных потоков трафика радиоинтерфейсов CPRI/eCPRI в мостах приведены характерные случаи взаимовлияния потоков, поступающих одновременно на разные входные порты. Приведен пример численного расчета, который позволил определить при заданной граничной сквозной задержке передачи высокоприоритетного трафика допустимую физическую длину сегмента Fronthaul.

Об авторах

А. В. Росляков
Поволжский государственный университет телекоммуникаций и информатики
Россия

доктор технических наук, профессор, заведующий кафедрой сетей и систем связи Поволжского государственного университета телекоммуникаций и информатики



В. В. Герасимов
Поволжский государственный университет телекоммуникаций и информатики
Россия

аспирант кафедры сетей и систем связи Поволжского государственного университета телекоммуникаций и информатики



Список литературы

1. Росляков А.В., Герасимов В.В., Мамошина Ю.С., Сударева М.Е. TSN – сети Еthernet, чувствительные ко времени // Инфокоммуникационные технологии. 2021. Т. 19. № 2. С. 187‒201. DOI:10.18469/ikt.2021.19.2.07. EDN:WSHBML

2. Росляков А.В. СЕТЬ 2030: архитектура, технологии, услуги. М.: ООО «ИКЦ «Колос-с», 2022. 278 с.

3. Росляков А.В., Герасимов В.В., Мамошина Ю.С., Сударева М.Е. Стандартизация синхронизируемых по времени сетей TSN // Стандарты и качество. 2021. № 4. С. 48‒53. DOI:10.35400/0038-9692-2021-4-48-53. EDN:UYWULY

4. Institute of Electrical and Electronics Engineers. 802.1CM-2018. IEEE Standard for local and metropolitan area networks. Time-Sensitive Networking for Fronthaul. IEEE, 2018. DOI:10.1109/IEEESTD.2018.8376066

5. Pérez G.O., López D.L., Hernández J.A. 5G New Radio Fronthaul Network Design for eCPRI-IEEE 802.1CM and Extreme Latency Percentiles // IEEE Access. 2019. Vol. 7. PР. 82218‒82230. DOI:10.1109/ACCESS.2019.2923020

6. Bhattacharjee S., Katsalis K., Arouk O., Schmidt R., Wang T., An X., et al. Network Slicing for TSN-Based Transport Networks // IEEE Access. 2021. Vol. 9. PР. 62788‒62809. DOI:10.1109/ACCESS.2021.3074802

7. Chinchilla-Romero L., Prados-Garzon J., Ameigeiras P., Muñoz P., Lopez-Soler J.M. 5G Infrastructure Network Slicing: E2E Mean Delay Model and Effectiveness Assessment to Reduce Downtimes in Industry 4.0 // Sensors. 2022. Vol. 22. Iss. 1. P. 229. DOI:10.3390/s22010229

8. Pérez G.O., Hernández J.A., López D.L. Fronthaul network modeling and dimensioning meeting ultra-low latency requirements for 5G // Journal of optical communications and networking. 2018. Vol. 10. Iss. 6. РР. 573‒581. DOI:10.1364/JOCN.10.000573

9. Gowda A., Hernández, J.A. Larrabeiti D., Kazovsky L. Delay analysis of mixed fronthaul and backhaul traffic under strict priority queueing discipline in a 5G packet transport network // Transactions on Emerging Telecommunications Technologies. 2017. Vol. 28. Iss. 6. P. e3168. DOI:10.1002/ett.3168

10. Bhattacharjee S., Schmidty R., Katsalis K., Changy C.-Y., Bauschertz T., Nikaeiny N. Time-Sensitive Networking for 5G Fronthaul Networks // Proceedings of the IEEE International Conference on Communications (ICC, Dublin, Ireland, 07‒11 June 2020). IEEE, 2020. DOI:10.1109/ICC40277.2020.9149161

11. Chitimalla D., Bhattacharjee S., Schmidty R., Katsalis K., Changy C.-Y., Bauschertz T., Nikaeiny N. 5G Fronthaul – Latency and Jitter Studies of CPRI over Ethernet // Journal of Optical Communications and Networking. 2017. Vol. 9. Iss. 2. PР. 172‒182. DOI:10.1364/JOCN.9.000172

12. Atiq M.K., Muzaffar R., Seijo Ó., Val I., Bernhard H.-P. When IEEE 802.11 and 5G Meet Time-Sensitive Networking // IEEE Open Journal of the Industrial Electronics Society. 2021. Vol. 3. РP. 14‒36. DOI:10.1109/OJIES.2021.3135524

13. Kumar U., Gupta A. Fundamentals of 5G: Emphasis on fronthaul and TSN protocols. 2021. 114 p. ASIN:B09CJ47V4G.

14. Типаков В.С., Яковлев Т.А. Особенности построения Anyhaul сетей 5G RAN // Вестник Астраханского государственного технического университета. 2020. №1(69). С. 38‒43. DOI:10.24143/1812-9498-2020-1-38-43. EDN:IPWONS

15. Лихтциндер Б.Я. Особенности ТSN // Вестник связи. 2021. № 7. C. 32–37. EDN:LHOQTW

16. Лихтциндер Б.Я. Сети Ethernet с детерминированными задержками // Вестник Самарского государственного технического университета. Серия «Технические науки». 2022. Т. 30. № 3(75). С. 81‒97. DOI:10.14498/tech.2022.3.6. EDN:EUMFSA

17. Берёзкин А.А., Паршин А.А., Парфенов Д.Д., Киричек Р.В. Анализ стандартов сетей, синхронизируемых по времени, для управления роботизированными системами в режиме реального времени // Электросвязь. 2023. № 6. С. 20‒31. DOI:10.34832/ELSV.2023.43.6.003. EDN:LWDQXI

18. Коган С. Стандартизация решений и сегментирование транспортного уровня сети 5G // Первая миля. 2021. № 2(94). C. 40‒47. DOI:10.22184/2070-8963.2021.94.2.40.47. EDN:KUCZTI

19. Богданова Е., Шишков К. Сегменты транспортной сети 5G // Connect. 2020. № 5-6. С. 84‒87.

20. Коган С. Транспортная оптическая инфраструктура для 5G // Connect. 2020. № 5-6. С. 74‒80.

21. Яковлев В. Основы оптоволоконной техники // Современная электроника и технологии автоматизации. 2002. № 4. URL: https://www.cta.ru/articles/cta/spravochnik/v-zapisnuyu-knizhku-inzhenera/125348 (дата обращения 31.01.2024)


Рецензия

Для цитирования:


Росляков А.В., Герасимов В.В. Анализ сквозной задержки в транспортном сегменте Fronthaul сетей 4G/5G на базе технологии TSN. Труды учебных заведений связи. 2024;10(1):73-84. https://doi.org/10.31854/1813-324X-2024-10-1-73-84. EDN: SJWTLO

For citation:


Roslyakov A., Gerasimov V. Analysis of End-to-End Delay in the Transport Segment of Fronthaul 4G/5G Networks Based on TSN Technology. Proceedings of Telecommunication Universities. 2024;10(1):73-84. (In Russ.) https://doi.org/10.31854/1813-324X-2024-10-1-73-84. EDN: SJWTLO

Просмотров: 318


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)