
Chaotic Communication Systems with Signal Modulation Based on Controlled Symmetry of Semi-Implicit Finite-Difference Models
https://doi.org/10.31854/1813-324X-2024-10-1-6-16
EDN: PRUEAO
Abstract
The article is devoted to investigation coherent communication system model with a new method of signal modulation based on variable symmetry of finite-difference schemes with subsequent experimental analysis of the effectiveness of different modulation techniques. The aim of the study is to investigate a computer model of chaotic communication system with signal modulation based on variable symmetry of semi-implicit finite-difference schemes. Novelty: elements of scientific novelty have finite-difference models of receivers/transmitters, allowing to realize a new method of modulation of chaotic signals. Result: obtaining a simulation model of coherent chaotic communication systems with tools for covertness and noise immunity analyses. Practical relevance: The simulation model of chaotic communication system is a necessary tool for analyzing the performance of the system before its physical implementation.
Keywords
References
1. Ostrovskii V.Y., Karimov A.I., Rybin V.G., Kopets E.E., Butusov D.N. Comparing the Finite-Difference Schemes in the Simulation of Shunted Josephson Junctions. Proceedings of the 23rd Conference of Open Innovations Association, FRUCT, 13‒16 November 2018, Bologna, Italy. IEEE; 2018. p.300–305. DOI:10.23919/FRUCT.2018.8588028
2. Kaddoum G. Wireless Chaos-Based Communication Systems: A Comprehensive Survey. IEEE Access. 2016;4:2621‒2648. DOI:10.1109/ACCESS.2016.2572730
3. Ostrovskii V.Y., Rybin V.G., Karimov A.I., Butusov D.N. Inducing multistability in discrete chaotic systems using numerical integration with variable symmetry. Chaos, Solitons & Fractals. 2022;165(1):112794. DOI:10.1016/j.chaos.2022.112794
4. Rahman Z.A.S., Jasim B.H., Al-Yasir Y.I., Hu Y.F., Abd-Alhameed R.A., Alhasnawi B.N. A New Fractional-Order Chaotic System with its Analysis, Synchronization, and Circuit Realization for Secure Communication Applications. Mathematics. 2021;9(20):2593. DOI:10.3390/math9202593
5. Benkouider K., Bouden T., Sambas A., Mohamed M.A., Sulaiman I. M., Mamat M., et al. Dynamics, Control and Secure Transmission Electronic Circuit Implementation of a New 3D Chaotic System in Comparison With 50 Reported Systems. IEEE Access. 2021;9:152150‒152168. DOI:10.1109/ACCESS.2021.3126655
6. Gokyildirim A., Kocamaz U.E., Uyaroglu Y., Calgan H. A novel five-term 3D chaotic system with cubic nonlinearity and its microcontroller-based secure communication implementation. AEU ‒ International Journal of Electronics and Communications. 2023;160:154497. DOI:10.1016/j.aeue.2022.154497
7. Babajans R., Cirjulina D., Capligins F., Kolosovs D., Grizans J., Litvinenko A. Performance Analysis of Vilnius Chaos Oscillator-Based Digital Data Transmission Systems for IoT. Electronics. 2023;12(3):709. DOI:10.3390/electronics12030709
8. Cirjulina D., Babajans R., Kolosovs D., Litvinenko A. Experimental Study on Frequency Modulated Chaos Shift Keying Communication System. Proceedings of the Workshop on Microwave Theory and Techniques in Wireless Communications, MTTW, 05‒07 October 2022, Riga, Latvia. IEEE; 2022. DOI:10.1109/MTTW56973.2022.9942593
9. Cui S., Zhang J. Chaotic Secure Communication Based on Single Feedback Phase Modulation and Channel Transmission. IEEE Photonics Journal. 2019;11(5):7905208. DOI:10.1109/JPHOT.2019.2931615
10. Butusov D.N., Karimov A.I., Tutueva A.V. Symmetric extrapolation solvers for ordinary differential equations. Proceedings of NW Russia Young Researchers in Electrical and Electronic Engineering Conference, EIConRusNW, 02‒03 February 2016, St. Petersburg, Russia. IEEE; 2016. p.162‒167. DOI:10.1109/EIConRusNW.2016.7448145
11. Voroshilova A., Wafubwa J. Discrete Competitive Lotka–Volterra Model with Controllable Phase Volume. Systems. 2020;8(2):17. DOI:10.3390/systems8020017
12. Butusov D.N., Ostrovskii V.Y., Karimov A.I., Andreev V.S. Semi-Explicit Composition Methods in Memcapacitor Circuit Simulation. International Journal of Embedded and Real-Time Communication Systems (IJERTCS). 2019;10(2):37–52. DOI:10.4018/ IJERTCS.2019040103
13. Terentev A.A., Butusov D.N., Fedoseev P.S. Novel Composition ODE Solver based on Semi-Implicit Integration. Proceedings of the International Conference on Soft Computing and Measurements, SCM, 27‒29 May 2020, St. Petersburg, Russia. IEEE; 2020. p.128–132. DOI:10.1109/SCM50615.2020.9198821
14. Reich S. Linearly implicit time stepping methods for numerical weather prediction. BIT Numerical Mathematics. 2006; 46:607–616. DOI:10.1007/s10543-006-0065-0
15. Tutueva A., Butusov D. Avoiding Dynamical Degradation in Computer Simulation of chaotic Systems Using Semi-Explicit Integration: Rössler Oscillator Case. Fractal and Fractional. 2021;5(4):214. DOI:10.3390/fractalfract5040214
16. Karimov T., Rybin V., Kolev G., Rodionova E., Butusov D. Chaotic Communication System with Symmetry-Based Modulation. Applied Sciences. 2021;11(8):3698. DOI:10.3390/app11083698
17. Tutueva A.V., Karimov T.I., Andreev V.S., Zubarev A.V., Rodionova E.A., Butusov D.N. Synchronization of Chaotic Systems via Adaptive Control of Symmetry Coefficient in Semi-Implicit Models. Proceedings of the Ural Smart Energy Conference, USEC, 13‒15 November 2020, Ekaterinburg, Russia. IEEE; 2020. p.143–146. DOI:10.1109/USEC50097.2020.9281181
18. Singh P.P. A Novel Chaotic System with Wide Spectrum, its Synchronization, Circuit Design and Application to Secure Communication. Indian Journal of Science and Technology. 2021;14(28):2351‒2367. DOI:10.17485/ijst/v14i28.1035
19. Rybin V., Kolev G., Kopets E., Dautov A., Karimov A., Karimov T. Optimal Synchronization Parameters for Variable Symmetry Discrete Models of Chaotic Systems. Proceedings of the 11th Mediterranean Conference on Embedded Computing, MECO, 07‒10 June 2022, Budva, Montenegro. IEEE; 2022. DOI:10.1109/MECO55406.2022.9797125
20. Rybin V., Butusov D., Rodionova E., Karimov T., Ostrovskii V., Tutueva A. Discovering Chaos-Based Communications by Recurrence Quantification and Quantified Return Map Analyses. International Journal of Bifurcation and Chaos. 2022;32(9): 2250136. DOI:10.1142/S021812742250136X
21. Pérez G., Cerdeira H.A. Extracting messages masked by chaos. Physical Review Letters. 1995;74(11):1970. DOI:10.1103/PhysRevLett.74.1970
22. Li S., Chen G., Alvarez G. Return-map cryptanalysis revisited. International Journal of Bifurcation and Chaos. 2006;16(5):1557–1568. DOI:10.1142/S0218127406015507
23. Yang T., Yang L.B., Yang C.M. Cryptanalyzing chaotic secure communications using return maps. Physics Letters A. 1998;245(6):495–510. DOI:10.1016/S0375-9601(98)00425-3
Review
For citations:
Rybin V. Chaotic Communication Systems with Signal Modulation Based on Controlled Symmetry of Semi-Implicit Finite-Difference Models. Proceedings of Telecommunication Universities. 2024;10(1):6-16. (In Russ.) https://doi.org/10.31854/1813-324X-2024-10-1-6-16. EDN: PRUEAO