Preview

Proceedings of Telecommunication Universities

Advanced search

Survey of Radio Communication Channel Models for Unmanned Aerial Vehicles

https://doi.org/10.31854/1813-324X-2018-4-4-85-101

Abstract

In this study we reviewed the models of the communication channel with unmanned aerial vehicles based on the latest experimental studies under the auspices of NASA. To formalize the radio channel models, they were divided into various functional scenarios: above water, in hilly terrain, in the mountains, and also in the city and suburb. For each scenario, various characteristics of radio channel measurements were analyzed, such as: propagation loss, consideration of multipath components, root-mean-square delay expansion, stationarity interval, Rice K-factor, correlation of received signals. The results of the analysis allow us to justify the choice of methods for processing navigation measurements in positioning tasks using the air segment based on unmanned aircraft.

About the Author

G. .. Fokin
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation


References

1. Sun R., Matolak D.W. Air-Ground Channel Characterization for Unmanned Aircraft Systems - Part II: Hilly and Mountainous Settings // IEEE Transactions on Vehicular Technology. 2017. Vol. 66. Iss. 3. PP. 1913-1925. DOI:10.1109/TVT.2016.2585504

2. Matolak D.W., Sun R. Air-Ground Channel Characterization for UNMANNED AIRCRAFT SYSTEMS: The Hilly Suburban Environment // IEEE 80th Vehicular Technology Conference (VTC2014-Fall). 2014. DOI:10.1109/VTCFall.2014.6965861

3. Sun R., Matolak D.W. Air-ground channel characterization for unmanned aircraft systems: The mountainous environment // 2015 IEEE/AIAA 34th Systems Conference (DASC). 2015. PP. 5C2-1-5C2-9.

4. Matolak D.W., Sun R. Air-Ground Channel Characterization for Unmanned Aircraft Systems - Part III: The Suburban and Near-Urban Environments // IEEE Transactions on Vehicular Technology. 2017. Vol. 66. Iss. 8. PP. 6607-6618. DOI:10.1109/ TVT.2017.2659651

5. Sun R. Dual-Band Non-Stationary Channel Modeling for the Air-Ground Channel. Doctoral Dissertation.University of South Carolina, 2015.

6. Matolak D.W., Sun R. Air-ground channel characterization for unmanned aircraft systems: The near-urban environment // IEEE Military Communications Conference (MILCOM). 2015. PP. 1656-1660. DOI:10.1109/MILCOM.2015.7357682

7. Sun R., Matolak D.W., Rayess W. Air-Ground Channel Characterization for Unmanned Aircraft Systems - Part IV: Air- frame Shadowing // IEEE Transactions on Vehicular Technology. 2017. Vol. 66. Iss. 9. PP. 7643-7652. DOI:10.1109/TVT.2017.2677884

8. Matolak D.W., Sun R. Air-Ground Channel Characterization for Unmanned Aircraft Systems - Part I: Methods, Measurements, and Models for Over-Water Settings // IEEE Transactions on Vehicular Technology. 2017. Vol. 66. Iss. 1. PP. 26-44. DOI:10.1109/TVT.2016.2530306

9. Материалы сайта Glenn Research Center. URL: https://www.nasa.gov/centers/glenn/home/index.html (дата обращения 28.11.2018)

10. Материалы сайта Berkley Varitronics Systems. URL: https://www.bvsystems.com (дата обращения 28.11.2018)

11. Reflection from the surface of the Earth. Report 1008-1 (Question 1/5) // International Telecommunications Union (ITU). 1990. PP. 75-82.

12. Gehring A., Steinbauer M., Gaspard I., Grigat M. Empirical Channel Stationarity in Urban Environments // Proceedings of the 4th European Personal Mobile Communications Conference (EPMCC). 2001. URL.: https://publik.tuwien.ac.at/files/pub-et_12758.pdf (дата обращения 28.11.2018)

13. Renaudin O., Kolmonen V.M., Vainikainen P., Oestges C. Non-Stationary Narrowband MIMO Inter-Vehicle Channel Characterization in the 5-GHz Band // IEEE Transactions on Vehicular Technology. 2010. Vol. 59. Iss. 4. PP. 2007-2015. DOI:10.1109/TVT.2010.2040851

14. Georgiou T.T. Distances and Riemannian Metrics for Spectral Density Functions // IEEE Transactions on Signal Processing. 2007. Vol. 55. Iss. 8. PP. 3995-4003. DOI:10.1109/TSP.2007.896119

15. Gudmundson M. Correlation model for shadow fading in mobile radio systems // Electronics letters. 1991. Vol. 27. Iss. 23. PP. 2145-2146.

16. Matolak D.W., Sun R. Antenna and frequency diversity in the unmanned aircraft systems bands for the over-sea setting // IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC). 2014. PP. 6A4-1-6A4-10. DOI:10.1109/DASC.2014.6979495

17. Greenstein L.J., Ghassemzadeh S.S., Erceg V., Michelson D.G. Ricean K-Factors in Narrow-Band Fixed Wireless Channels: Theory, Experiments, and Statistical Models // IEEE Transactions on Vehicular Technology. 2009. Vol. 58. Iss. 8. PP. 4000-4012. DOI:10.1109/TVT.2009.2018549

18. Tepedelenlioglu C., Abdi A., Giannakis G.B. The Ricean K factor: estimation and performance analysis // IEEE Transactions on Wireless Communications. 2003. Vol. 2. Iss. 4. PP. 799-810. DOI:10.1109/TWC.2003.814338

19. Parsons J.D. The Mobile Radio Propagation Channel. Chichester: John Wiley & Sons, 2000.

20. Beckmann P., Spizzichino A. The scattering of electromagnetic waves from rough surfaces. Norwood, MA: Artech House, 1987. 511 p.


Review

For citations:


Fokin G... Survey of Radio Communication Channel Models for Unmanned Aerial Vehicles. Proceedings of Telecommunication Universities. 2018;4(4):85-101. (In Russ.) https://doi.org/10.31854/1813-324X-2018-4-4-85-101

Views: 329


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)