Preview

Proceedings of Telecommunication Universities

Advanced search

IoT Traffic Fractal Dimension Statistical Characteristics on the Kitsune Dataset Example

https://doi.org/10.31854/1813-324X-2023-9-5-112-119

Abstract

The paper considers a method for estimating the fractal properties of traffic, and also evaluates the statistical parameters of the fractal dimension of IoT traffic. An analysis of real traffic with attacks from the Kitsune dump and an analysis of the fractal properties of traffic in normal mode and under the influence of attacks such as SSDP Flood, Mirai, OS Scan showed that jumps in the fractal dimension of traffic when attacks occur can be used to create algorithms for detecting computer attacks in IoT networks. Studies have shown that in the case of online analysis of network traffic, when assessing the RF, preference should be given to the modified algorithm for estimating the Hurst exponent in a sliding analysis window.

About the Authors

O. Shelukhin
Moscow Technical University of Communications and Informatics
Russian Federation


S. Rybakov
Moscow Technical University of Communications and Informatics
Russian Federation


References

1. Minerva R., Biru A., Rotondi D. Towards a definition of the Internet of Things (IoT). Telecom Italia S.p.A.; 2015. p.10–21. URL: https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf [Access-ed 25.10.2023]

2. Dorsemaine B., Gaulier J.-P., Wary J.-P., Kheir N., Urien P. Internet of Things: A Definition & Taxonomy. Proceedings of the 9th International Conference on Next Generation Mobile Applications, Services and Technologies (NGMAST, Cambridge, UK, 09‒11 September 2015). IEEE; 2015. DOI:10.1109/NGMAST.2015.71

3. Statista. Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025. URL: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide [Accessed 12.02.2023]

4. Securelist. Demeter D., Preuss M., Shmelev Y. IoT: a malware story. 2019. URL: https://securelist.com/iot-a-malware-story/94451 [Accessed 11.02.2023]

5. Shevtsov V.Y., Kasimovsky N.P Threat and vulnerability analysis of IoT and IIoT concepts. NBI technologies. 2020;14(3): 28‒35. DOI:10.15688/NBIT.jvolsu.2020.3.5

6. Sheluhin O. I. Network Anomalies. Detection, Localization, Forecasting. Moscow: Goryachaya liniya ‒ Telekom Publ.; 2019. 448 p.

7. Sheluhin O.I., Osin A.V., Smolsky S.M. Self-Similarity and Fractals. Telecommunication. Moscow: Fizmatlit Publ.; 2008. 368 p.

8. Sheluhin O.I., Lukin I.Yu. Network traffic anomalies detection using fixing method of jumps of multifractal dimension in the real-time mode. Automatic Control and Computer Sciences. 2018;52(5):421‒430. DOI:10.3103/S0146411618050115

9. Sheluhin O., Rybakov S., Vanyushina A. Modified Algorithm for Detecting Network Attacks Using the Fractal Dimension Jump Estimation Method in Online Mode. Proceedings of Telecom. Univ. 2022;8(3):117‒126. DOI:10.31854/1813-324X-2022-8-3-117-126

10. Sheluhin O.I., Rybakov S.Y., Vanyushina A.V. Detection of Network Anomalies with the Method of Fixing Jumps of the Fractal Dimension in the Online Mode. Proceedings of the Conference on Wave Electronics and its Application in Information and Telecommunication Systems. WECONF, 30 May ‒ 03 June 2022, St. Petersburg, Russia. IEEE; 2022. DOI:10.1109/WECONF55058.2022.9803635

11. Sheluhin O.I., Rakovskiy D.I. Multi-Label Learning in Computer Networks. Proceedings of the Conference on Systems of Signals Generating and Processing in the Field of on Board Communications, 14‒16 March 2023, Moscow, Russia. IEEE; 2023. DOI:10.1109/IEEECONF56737.2023.10092157

12. Bolshakov A.S., Gubankova E.V. Anomaly detection in computer networks using machine learning methods. REDS: Telecommunication Devices and Systems. 2020;10(1):37‒42.

13. Mirsky Y., Doitshman T., Elovici Y., Shabtai A. Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection. arXiv:1802.09089. 2018. DOI:10.48550/arXiv.1802.09089

14. Miyamoto K., Goto H., Ishibashi R., Han C., Ban T., Takahashi, et al. Malicious Packet Classification Based on Neural Network Using Kitsune Features. Proceedings of the Second International Conference on Intelligent Systems and Pattern Recognition, ISPR 2022, 24–26 March 2022, Hammamet, Tunisia. Communications in Computer and Information Science, vol.1589. Cham: Springer; 2022. p.306–314. DOI:10.1007/978-3-031-08277-1_25

15. Alabdulatif A., Rizvi S.S.H. Machine Learning Approach for Improvement in Kitsune NID. Intelligent Automation & Soft Computing. 2022;32(2):827‒840. DOI:10.32604/iasc.2022.021879


Review

For citations:


Shelukhin O., Rybakov S. IoT Traffic Fractal Dimension Statistical Characteristics on the Kitsune Dataset Example. Proceedings of Telecommunication Universities. 2023;9(5):112-119. (In Russ.) https://doi.org/10.31854/1813-324X-2023-9-5-112-119

Views: 241


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)