Preview

Proceedings of Telecommunication Universities

Advanced search

A Review of User Identification Methods Based on Digital Fingerprint

https://doi.org/10.31854/1813-324X-2023-9-5-91-111

Abstract

Methods of user identification based on digital fingerprints are considered. The main approaches for the browser fingerprints creation which is installed on the user's device and characterizes the device belonging to the user are presented. The methods used to identify a person (user) during the operation of the device are also described. Methods using both the dynamics of keystrokes and interactions with the touch screen, voice and geolocation data, as well as behavioral biometrics and behavioral profile are presented. The concept of continuous authentication is described as a development of the identification approach. A list of publicly available data sets mentioned in the studies reviewed in the review is provided, with links to download them.

About the Authors

A. Osin
Moscow Technical University of Communications and Informatics
Russian Federation


Y. Murashko
Moscow Technical University of Communications and Informatics
Russian Federation


References

1. Agafonov Yu.M. Deanonymization of users based on digital fingerprints of the browser. Proceedings of the XVI All-Russian Scientific and Practical Conference of Students, Graduate Students, Young Scientists on Security of the Information Space – 2017, 12 December 2017, Ekaterinburg, Russian Federation. Ekaterinburg: Ural Federal University Publ.; 2018. p.3−5.

2. Alisultanova E.D., Isaeva M.Z., Baltiev D.U. Analysis of Systemsautonomous Site User Identification. Elektronnaya nauka. 2021;2(2):7.

3. Ishkuvatov S.M., Komarov I.I. Traffic Authenticity Analysis Based on Digital Fingerprint Data of Network Protocol Implementations. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2020:20(5):747−754. DOI:10.17586/2226-1494-2020-20-5-747-754

4. Balmaev I.T. Identification of Tor network users based on intercepted traffic parameters. Proceedings of the Interuniversity Scientific and Technical Conference of Students, Postgraduates and Young Specialists, 17 February ‒ 01 March 2017, Moscow, Russian Federation. Moscow: Moscow Institute of Electronics and Mathematics, National Research University Higher School of Economics Publ.; 2017. p.372‒373.

5. Shulitsky D.S., Vodeyko A E. Methods of Copyright Protection for Software Products Using Watermarks and Fingerprints. 2019. URL: https://libeldoc.bsuir.by/bitstream/123456789/37230/1/Shulitskiy_Metody.pdf [Accessed 20.10.2023]

6. Gusev P.D. Review of Existing Algorithms for Constructing Digital Fingerprints. IT Security(Russia). 2015;22(4):63‒67.

7. Borisova S.N. Methods of Protection from the Audio-Files from Unauthorized Copying and Distribution. Fundamental research. 2015;3-5:481−487.

8. Eckersley P. How Unique Is Your Web Browser? Proceedings of the 10th International Symposium on Privacy Enhancing Technologies Symposium, PETS 2010, 21−23 July 2010, Berlin, Germany. Lecture Notes in Computer Science, vol.6205. Berlin, Heidelberg: Springer; 2010. p.1−18. DOI:10.1007/978-3-642-14527-8_1

9. Mowery K., Shacham H. Pixel Perfect: Fingerprinting Canvas in HTML5. Proceedings of W2SP. 2012. URL: https://api.semanticscholar.org/CorpusID:1399943 [Accessed 20.10.2023]

10. Cao Y., Li S., Wijmans E. (Cross-) Browser Fingerprinting via OS and Hardware Level Features. NDSS’ 2017, San Diego, USA, 26 February − 1 March 2017. 2017. DOI:10.14722/ndss.2017.23152

11. Englehardt S., Narayanan A. Online tracking: A 1-million-site Measurement and Analysis. Proceedings of the Conference on Computer and Communications Security, 2016 ACM SIGSAC, 24−28 October 2016, Vienna, Austria. New York: Association for Computing Machinery; 2016. p.1388−1401. DOI:10.1145/2976749.2978313

12. Sjösten A., Van Acker S., Sabelfeld A. Discovering Browser Extensions via Web Accessible Resources. Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy, CODASPY '17, 22−24 March 2017, Scottsdale, USA. New York: Association for Computing Machinery; 2017. p.329−336. DOI:10.1145/3029806.3029820

13. Sanchez-Rola I., Santos I., Balzarotti D. Extension Breakdown: Security Analysis of Browsers Extension Resources Control Policies. Proceedings of the 26th USENIX Conference on Security Symposium, USENIX Security 17, 16−18 August 2017, Vancouver, Canada. Berkeley: USENIX Association; 2017. p.679−694.

14. Starov O., Nikiforakis N. Xhound: Quantifying the Fingerprintability of Browser Extensions. Proceedings of the Symposium on Security and Privacy, SP, 22−26 May 2017, San Jose, USA). IEEE; 2017. p.941−956. DOI:10.1109/SP.2017.18

15. Mowery K., Bogenreif D., Yilek S., Shacham H. Fingerprinting Information in JavaScript Implementations. 2012. URL: https://search.iczhiku.com/paper/hgdOSDNQ7g2K8zv8.pdf [Accessed 20.10.2023]

16. Nakibly G., Shelef G., Yudilevich S. Hardware Fingerprinting Using HTML5. arXiv:1503.01408. 2015. DOI:10.48550/arXiv.1503.01408

17. Olejnik Ł., Acar G., Castelluccia C., Diaz C. The leaking battery. Proceedings of the International Workshop on Data Privacy Management International Workshop on Quantitative Aspects in Security Assurance. 2015. p.254−263. DOI:10.1007/978-3-319-29883-2_18

18. Vastel A., Laperdrix P., Rudametkin W., Rouvoy R. FP-STALKER: Tracking Browser Fingerprint Evolutions. Proceedings of the Symposium on Security and Privacy, SP, USA, 20−24 May 2018, San Francisco. IEEE; 2018. p.728−741. DOI:10.1109/SP.2018.00008

19. Laperdrix P., Rudametkin W., Baudry B. Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints. Proceedings of the Symposium on Security and Privacy, SP, 22−26 May 2016, San Jose, USA. IEEE; 2016. p.878−894. DOI:10.1109/SP.2016.57

20. Gómez-Boix A., Laperdrix P., Baudry B. Hiding in the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting at Large Scale. Proceedings of the World Wide Web Conference, 23−27 April 2018, Lyon, France. 2018. p.309−318. DOI:10.1145/ 3178876.3186097

21. Operation Fingerprint. A look into several Angler Exploit Kit malvertising campaigns. 2016. URL: https://malwarebytes.app.box.com/v/operation-fingerprint [Accessed 26.04.2023]

22. LexisNexis Risk Solutions. ThreatMetrix − Cybersecurity Risk Management. URL: https://risk.lexisnexis.com/products/threatmetrix [Accessed 26.04.2023]

23. Imperva. The Evolution of Hi-Def Fingerprinting in Bot Mitigation. 2018. URL: https://www.imperva.com/blog/the-evolution-of-hi-def-fingerprinting-in-bot-mitigation [Accessed 26.04.2023]

24. MaxMind. Track Devices. 2023. URL: https://dev.maxmind.com/minfraud/track-devices [Accessed 26.04.2023]

25. HUMAN Bot Defender. Safeguard Websites, Mobile Apps & APIs From Bots. 202]. URL: https://www.humansecurity.com/products/human-bot-defender#scroll-down [Accessed 26.04.2023]

26. IPQualityScore. Device Fingerprinting. 2023. URL: https://www.ipqualityscore.com/device-fingerprinting [Accessed 26.04.2023]

27. Radware. Comprehensive Bot Management. 2023. URL: https://www.radware.com/products/bot-manager [Accessed 26.04.2023]

28. Sift. Fraud Detection Software for Secure Growth. 2023. URL: https://sift.com/products/digital-trust-safety-platform [Accessed 26.04.2023]

29. SecurAuth. Device Recognition. 2023. URL: https://docs.secureauth.com/2104/en/device-recognition.html [Accessed 26.04.2023]

30. TransUnion. TruValidate. 2023. URL: https://www.transunion.com/solution/truvalidate [Accessed 26.04.2023]

31. Murashko Yu.V., Papaev B.N. Increasing the Accuracy of User Identification by Digital Fingerprint Using a Two-Stage Approach. X International Scientific and Practical Conference on Prospective scientific research: experience, problems and prospects of development. 2023. p.191-195.

32. Murashko Yu.V. User Identification in Network Traffic. Proceedings of the All-Russian Scientific and Technical Conference on Actual Problems of Radio Electronics and Telecommunications, 25−28 April 2023, Samara, Russian Federation. 2023. p.166-169.

33. Sultana M., Paul P.P., Gavrilova M. A Concept of Social Behavioral Biometrics: Motivation, Current Developments, and Future Trends. Proceedings of the International Conference on Cyberworlds, 06−08 October 2014, Santander, Spain. IEEE; 2014. p.271−278. DOI:10.1109/CW.2014.44

34. Murashko Yu.V. Identification of network users by their behavior. Proceedings of the IX All-Russian Scientific and Technical Conference on Fundamental and Applied Aspects of Computer Technologies and Information Security, 10−15 April 2023, Taganrog, Russian Federation). Rostov-on-Donu: Southern Federal University Publ.; 2023. p.54−56.

35. Rybnik M., Tabedzki M., Adamski M., Saeed K. An Exploration of Keystroke Dynamics Authentication Using Nonfixed Text of Various Length. Proceedings of the International Conference on Biometrics and Kansei Engineering, 05−07 July 2013, Tokyo, Japan. IEEE; 2013. p.245−250. DOI:10.1109/ICBAKE.2013.48

36. Shimshon T., Moskovitch R., Rokach L., Elovici Y. Continuous Verification Using Keystroke Dynamics. Proceedings of the International Conference on Computational Intelligence and Security, 11−14 December 2010, Nanning, China. IEEE; 2010. p.411−415. DOI:10.1109/CIS.2010.95

37. Teh P.S., Teoh A.B.J., Yue S. A Survey of Keystroke Dynamics Biometrics. The Scientific World Journal. 2013;2013:408280. DOI:10.1155/2013/408280

38. Tsimperidis I., Yoo P.D., Taha K., Mylonas A., Katos V. R2BN: An adaptive Model for Keystroke-Dynamics-Based Educational Level Classification. IEEE Transactions on Cybernetics. 2018;50(2):525−535. DOI:10.1109/TCYB.2018.2869658

39. Alshanketi F., Traore I., Ahmed A.A. Improving Performance and Usability in Mobile Keystroke Dynamic Biometric Authentication. Proceedings of the IEEE Security and Privacy Workshops, SPW, 22−26 May 2016, San Jose, USA. IEEE; 2016. p. 66−73. DOI:10.1109/SPW.2016.12

40. Ali M.L., Thakur K., Tappert C.C., Qiu M. Keystroke Biometric User Verification Using Hidden Markov Model. Proceed-ings of the 3rd International Conference on Cyber Security and Cloud Computing, CSCloud, 25−27 June 2016, Beijing, China. IEEE; 2016. p.204−209. DOI:10.1109/CSCloud.2016.23

41. Krishnamoorthy S., Rueda L., Saad S., Elmiligi H. Identification of User Behavioral Biometrics for Authentication Using Keystroke Dynamics and Machine Learning. Proceedings of the 2nd International Conference on Biometric Engineering and Applications, ICBEA '18, 16−18 May 2018, Amsterdam, Netherlands. New York: Association for Computing Machinery; 2018. p.50‒57. DOI:10.1145/3230820.3230829

42. Higashino J. Signature Verification System on Neuro-Computer. Proceedings of the 11th International Conference on Pattern Recognition, IAPR, 30 August ‒ 3 September 1992, Hague, Netherlands, vol.3. 1992. p.517‒521.

43. Everitt R.A.J., McOwan P.W. Java-based internet biometric authentication system. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003;25(9):1166‒1172. DOI:10.1109/TPAMI.2003.1227991

44. Ahmed A.A.E., Traore I. A New Biometric Technology Based on Mouse Dynamics. IEEE Transactions on Dependable and Secure Computing. 2007;4(3):165‒179. DOI:10.1109/TDSC.2007.70207

45. Antal M., Szabó L.Z. Biometric Authentication Based on Touchscreen Swipe Patterns. Procedia Technology. 2016;22: 862‒869. DOI:10.1016/j.protcy.2016.01.061

46. Khan H., Hengartner U. Towards application-centric implicit authentication on smartphones. Proceedings of the 15th Workshop on Mobile Computing Systems and Applications, 26‒27 February 2014, Santa Barbara, USA. New York: Association for Computing Machinery; 2014. P. 10. p.1‒6. DOI:10.1145/2565585.2565590

47. Ferrero R., Gandino F., Montrucchio B., Rebaudengo M., Velasco A., Benkhelifa I. On gait recognition with smartphone accelerometer. Proceedings of the 4th Mediterranean Conference on Embedded Computing, MECO, 14‒18 June 2015, Budva, Montenegro. IEEE; 2015. p.368‒373. DOI:10.1109/MECO.2015.7181946

48. Fantana A.L., Ramachandran S., Schunck C.H., Talamo M. Movement based biometric authentication with smartphones. Proceedings of the International Carnahan Conference on Security Technology, ICCST, 21‒24 September 2015, Taipei, Taiwan. IEEE; 2015. p.235‒239. DOI:10.1109/CCST.2015.7389688

49. Laghari A., Waheed-ur-Rehman, Memon Z.A. Biometric authentication technique using smartphone sensor. Proceedings of the 13th International Bhurban Conference on Applied Sciences and Technology, IBCAST, 12‒16 January 2016, Islamabad, Pakistan. IEEE; 2016. p.381‒384. DOI:10.1109/IBCAST.2016.7429906

50. Hong F., Wei M., You S., Feng Y., Guo Z. Waving authentication: your smartphone authenticate you on motion gesture. Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, 18‒23 April 2015, Seoul, Republic of Korea. New York: Association for Computing Machinery; 2015. p.263‒266. DOI:10.1145/2702613.2725444

51. Ehatisham-ul-Haq M., Azam,M.A., Naeem U., Amin Y., Loo J. Continuous authentication of smartphone users based on activity pattern recognition using passive mobile sensing. Journal of Network and Computer Applications. 2018;109:24‒35. DOI:10.1016/j.jnca.2018.02.020

52. Feng T., Zhao X., Shi W. Investigating Mobile Device Picking-up motion as a novel biometric modality. Proceedings of the Sixth International Conference on Biometrics on Theory, Applications and Systems, BTAS, 29 September ‒ 02 October 2013, Arlington, USA. IEEE; 2013. DOI:10.1109/BTAS.2013.6712701

53. Oak R., Khare M. A Novel Architecture for Continuous Authentication Using Behavioural Biometrics. Proceedings of the International Conference on Current Trends in Computer, Electrical, Electronics and Communication, India, 8‒9 September 2017, CTCEEC, Mysore. 2017. p.767‒771. DOI:10.1109/CTCEEC.2017.8455040

54. Reynolds D.A. An Overview of Automatic Speaker Recognition Technology. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, ICASSP, 13‒17 May 2002, Orlando, USA, vol.4. IEEE; 2002. p.4072‒4075.

55. Ravanelli M., Bengio Y. Speaker Recognition from Raw Waveform with SincNet. Proceedings of the Spoken Language Technology Workshop, SLT, 18‒21 December 2018, Athens, Greece. IEEE; 2018. p.1021‒1028. DOI:10.1109/SLT.2018.8639585

56. Arik S., Chen J., Peng K., Ping W., Zhou Y. Neural Voice Cloning with a Few Samples. Proceedings of the 32nd Confer-ence on Neural Information Processing Systems, NeurIPS 2018, 3‒8 December 2018, Montréal, Canada, vol.31. 2018.

57. Hu Q., Marchi E., Winarsky D., Stylianou Y., Naik D., Kajarekar S. Neural Text-to-Speech Adaptation from Low Quality Public Recordings. Proceedings of the 10th ISCA Workshop on Speech Synthesis, SSW 10, 20-22 September 2019, Vienna, Austria, vol.10. 2019. p.24‒28. DOI:10.21437/SSW.2019-5

58. Kameoka H. Stargan-vc: Non-parallel many-to-many voice conversion using star generative adversarial networks. Proceedings of the Spoken Language Technology Workshop, SLT, 18‒21 December 2018, Athens, Greece. IEEE; 2018. p.266−273. DOI:10.1109/SLT.2018.8639535

59. Rebryk Y., Beliaev S. Convoice: Real-Time Zero-Shot Voice Style Transfer with Convolutional Network. arXiv:2005.07815. 2020. DOI:10.48550/arXiv.2005.07815

60. Wu D.Y., Chen Y.H., Lee H.Y. Vqvc+: One-Shot Voice Conversion by Vector Quantization and U-Net Architecture. arXiv:2006.04154. 2020. DOI:10.48550/arXiv.2006.04154

61. Wenger E., Bronckers M., Cianfarani C., Cryan J., Sha A., Zheng H., et al. "Hello, It's Me": Deep Learning-based Speech Synthesis Attacks in the Real World. Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 15−19 November 2021, Virtual Event Republic of Korea. New York: Association for Computing Machinery; 2021. p.235−251. DOI:10.1145/3460120.3484742

62. Janicki A., Alegre F., Evans N. An assessment of automatic speaker verification vulnerabilities to replay spoofing attacks. Security and Communication Networks. 2016;9(15):3030−3044. DOI:10.1002/sec.1499

63. Kinnunen T., Sahidullah M., Delgado H., Todisco M., Evans N. Yamagishi J., et al. The ASVspoof 2017 Challenge: Assessing the Limits of Replay Spoofing Attack Detection. 2017. URL: https://www.eurecom.fr/~evans/papers/pdfs/5235.pdf [Accessed 22.10.2023]

64. Gao Y., Lian J., Raj B., Singh R. Detection and Evaluation of Human and Machine Generated Speech in Spoofing Attacks on Automatic Speaker Verification Systems. Proceedings of the Spoken Language Technology Workshop, SLT, 19−22 January 2021, Shenzhen, China. IEEE; 2021. p.544−551. DOI:10.1109/SLT48900.2021.9383558

65. Vestman V., Kinnunen T., Hautamäki R.G., Sahidullah Md. Voice Mimicry Attacks Assisted by Automatic Speaker Verification. Computer Speech & Language. 2020;59:36−54. DOI:10.1016/j.csl.2019.05.005

66. Masuko T., Hitotsumatsu T., Tokuda K., Kobayashi T. On the security of HMM-based speaker verification systems against imposture using synthetic speech. Proceedings of the Sixth European Conference on Speech Communication and Technology, EUROSPEECH 1999, 5-9 September 1999, Budapest, Hungary. 1999.

67. Mukhopadhyay D., Shirvanian M., Saxena N. All Your Voices are Belong to Us: Stealing Voices to Fool Humans and Machines. Proceedings of the 20th European Symposium on Research in Computer Security, ESORICS 2015, 21−25 September 2015, Vienna, Austria. Lecture Notes in Computer Science, vol.9327. Cham: Springer; 2015. p.599−621. DOI:10.1007/978-3-319-24177-7_30

68. Partila P., Tovarek J., Ilk G.H., Rozhon J., Voznak M. Deep Learning Serves Voice Cloning: How Vulnerable Are Automatic Speaker Verification Systems to Spoofing Trials? IEEE Communications Magazine. 2020;58(2):100‒105. DOI:10.1109/MCOM.001.1900396

69. Ahmed M.E., Kwak I.Y., Huh J.H., Kim I., Oh T., Kim H. Void: A fast and light voice liveness detection system. Proceedings of the 29th USENIX Security Symposium, USENIX Security, 12–14 August 2020. 2020. p.2685‒2702.

70. AlBadawy E.A., Lyu S., Farid H. Detecting AI-Synthesized Speech Using Bispectral Analysis. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. 2019. p.104‒109.

71. Huang C., Lin Y.Y., Lee H., Lee L. et al. Defending Your Voice: Adversarial Attack on Voice Conversion. Proceedings of the Spoken Language Technology Workshop, SLT, 19−22 January 2021, Shenzhen, China. IEEE; 2021. p.552‒559. DOI:10.1109/SLT48900.2021.9383529

72. Kobayashi R., Yamaguchi R.S. A Behavior Authentication Method Using Wi-Fi BSSIDs around Smartphone Carried by a User. Proceedings of the Third International Symposium on Computing and Networking, CANDAR, 08‒11 December 2015, Sapporo, Japan. IEEE; 2015. p.463‒469. DOI:10.1109/CANDAR.2015.45

73. Bassu D., Cochinwala M., Jain A. A new mobile biometric based upon usage context. Proceedings of the International Conference on Technologies for Homeland Security, HST, 12‒14 November 2013, Waltham, USA. IEEE; 2013. p.441‒446. DOI:10.1109/THS.2013.6699045

74. Branscomb A.S. Behaviorally Identifying Smartphone Users. Master’s Thesis. Raleigh: North Carolina State University; 2013.

75. Neal T.J., Woodard D.L., Striegel A.D. Mobile device application, Bluetooth, and Wi-Fi usage data as behavioral biometric traits. Proceedings of the 7th International Conference on Biometrics Theory, Applications and Systems, BTAS, 08‒11 September 2015, Arlington, USA. IEEE; 2015. p.1‒6. DOI:10.1109/BTAS.2015.7358777

76. Fridman L., Weber S., Greenstadt R., Kam M. Active Authentication on Mobile Devices via Stylometry, Application Usage, Web Browsing, and GPS Location. IEEE Systems Journal. 2016;11(2):513‒521. DOI:10.1109/JSYST.2015.2472579

77. Brocardo M.L., Traore I., Saad S., Woungang I. Authorship verification for short messages using stylometry. Proceedings of the International Conference on Computer, Information and Telecommunication Systems, CITS, 07‒08 May 2013, Athens, Greece. IEEE; 2013. p.1‒6. DOI:10.1109/CITS.2013.6705711

78. Cao H., Bao T., Yang Q., Chen E. An effective approach for mining mobile user habits. Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, 26‒30 October 2010, Toronto, Canada. New York: Association for Computing Machinery; 2010. p.1677‒1680. DOI:10.1145/1871437.1871702

79. Jang J., Yun J., Woo J., Kim H.K. Andro-profiler: anti-malware system based on behavior profiling of mobile malware. Proceedings of the 23rd International Conference on World Wide Web, WWW '14 Companion, 7‒11 April 2014, Seoul, Korea. New York: Association for Computing Machinery, 2014. p.737‒738. DOI:10.1145/2567948.2579366

80. Github. UMDAA-02 Dataset. 2018. URL: https://umdaa02.github.io [Accessed 26.04.2023]

81. Github. BiDAlab/HuMIdb. 2020. URL: https://github.com/BiDAlab/HuMIdb [Accessed 26.04.2023]

82. Github. BiDAlab/MobileB2C_BehavePassDB. 2022. URL: https://github.com/BiDAlab/MobileB2C_BehavePassDB [Accessed 26.04.2023]

83. Mahbub U., Sarkar S., Patel V.M., Chellappa R. Active user authentication for smartphones: A challenge data set and benchmark results. Proceedings of the 8th international conference on biometrics theory, applications and systems, BTAS, 06‒09 September 2016, Niagara Falls, USA. IEEE; 2016. p.1‒8. DOI:10.1109/BTAS.2016.7791155

84. Acien A., Morales A., Fierrez J., Vera-Rodriguez R., Delgado-Mohatar O. BeCAPTCHA: Behavioral bot detection using touchscreen and mobile sensors benchmarked on HuMIdb. Engineering Applications of Artificial Intelligence. 2021;98:104058. DOI:10.1016/j.engappai.2020.104058

85. Stragapede G., Vera-Rodriguez R., Tolosana R., Morales A. BehavePassDB: Public Database for Mobile Behavioral Biometrics and Benchmark Evaluation. Pattern Recognition. 2023;134:109089. DOI:10.1016/j.patcog.2022.109089

86. Ananya, Singh S. Keystroke Dynamics for Continuous Authentication. Proceedings of the 8th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 11‒12 January 2018, Noida. IEEE; 2018. p.205‒208. DOI:10.1109/CONFLUENCE.2018.8442703

87. Mondal S., Bours P. Continuous authentication using mouse dynamics. Proceedings of the International Conference of the BIOSIG Special Interest Group, BIOSIG, 05‒06 September 2013, Darmstadt, Germany. IEEE; 2013. p.1‒12.

88. Plurilock. Plurilock AI ‒ Least privilege CASB, DLP with DEFEND technology. 2016. URL: https://plurilock.com [Accessed 26.04.2023]

89. ThreatMark. ThreatMark Fraud Prevention Solution. 2015. URL: https://www.threatmark.com [Accessed 26.04.2023]

90. Aculab. VoiSentry. 2018. URL: https://www.aculab.com/biometric-technologies/voisentry [Accessed 26.04.2023]

91. Cynet. User Behavior Analytics (UBA). 2018. URL: https://www.cynet.com/platform/user-behaviour-analytics [Accessed 26.04.2023]

92. UnifyID. Authentication platform. 2015. URL: https://unify.id [Accessed 26.04.2023]

93. Craft.co. SecuredTouch Company Profile ‒ Office Locations, Competitors, Financials, Employees, Key People, News. 2016. URL: https://craft.co/securedtouch [Accessed 26.04.2023]


Review

For citations:


Osin A., Murashko Y. A Review of User Identification Methods Based on Digital Fingerprint. Proceedings of Telecommunication Universities. 2023;9(5):91-111. (In Russ.) https://doi.org/10.31854/1813-324X-2023-9-5-91-111

Views: 363


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)