Investigations of Single-Mode Optical Fiber Microbending Properties
https://doi.org/10.31854/1813-324X-2023-9-4-15-20
Abstract
This research is devoted to the study of the properties of the microbending of an optical fiber. It is shown that an increase in the diameter of a microbend at a constant force in the area of its formation led to an increase in the power of optical radiation output from the fiber in the area of the microbend. It has been established that the smallest value of the optical radiation power branched in the microbending region and the smallest value of the radiation power loss at the microbending for the entire range of wavelengths under study is observed for the G657 optical fiber. The largest value of the radiation power branched off in the microbending region and the largest value of the radiation power loss at the microbending for the entire range of wavelengths under study is observed for the G655 optical fiber. The results of the article can be used in systems for protecting information transmitted over fiber-optic communication lines.
About the Authors
I. GulakovBelarus
A. Zenevich
Belarus
T. Matkovskaya
Belarus
E. Novikov
Belarus
References
1. Dmitriev S.A., Slepov N.N. Fiber-Optic Technology: Current State and New Prospects. Moscow: Tekhnosfera Publ.; 2010. 576 p.
2. Govind P. Agrawal Fiber-Optic Communication Systems. New York: Wiley-Interscience; 2002. 530 p.
3. Sklyarov O.K. Fiber-optic networks and communication systems. St. Petersburg: Lan Publ.; 2021. 268 p.
4. Zenevich A.O. Detectors of Information Leakage from Optical Fiber. Minsk: Belarusian State Academy of Communications Publ.; 2017. 143 p.
5. Stenina T.A. Study of the influence of bends on optical fiber. Eurasian Union of Scientists. 2015;11(2):70–73.
6. Freeman R.L. Fiber-optic communication systems. Moscow: Technosfera Publ.; 2003. 514 p.
7. Laferriere J., Lietaert G., Taws R., Wolszczak S. Reference Guide to Fiber Optic Testing. Saint-Etienne: JDS Uniphase Corporation; 2011. 172 р.
8. GOST IEC 60050-731-2017. International Electrotechnical Dictionary. Chapter 731. Moscow: Standartinform Publ.; 2020. 41 p.
9. Tosco F. Technical Staff of CSELT: Fiber Optics Communication Handbook. 1990. p.241–246.
10. Unger C., Stocklein W. Investigation of the microbending sensitivity of fibers. Journal of Lightwave Technology. 1994;12(4):591‒596. DOI:10.1109/50.285350
11. Malykh Yu.V., Shubin V.V. Method for calculating the efficiency of radiation transmission from the side surface of a curved single-mode optical fiber to a receiving optical device. Questions of atomic science and technology. Series of mathematical modeling of physical processes. 2016;1:69‒79.
12. Varava N., Pronin S., Nikonorov M. Receiving and transmitting modules for fiber-optic communication lines using packet data transfer. First Mile. 2018;5:22–28. DOI:10.22184/2070-8963.2018.74.5.22.28
13. Shubin V.V. Information security of fiber-optic systems. Sarov: All-Russian Research Institute of Experimental Physics Publ.; 2015. 257 p.
14. Gulakov I.R., Zenevich A.O., Kochergina O.V., Matkovskaya T.A. Detection of an information leakage channel from a multimode fiber using a silicon photomultiplier. Doklady BSUIR. 2022;20(6):37–44. DOI:10.35596/1729-7648-2022-20-6-37-44
Review
For citations:
Gulakov I., Zenevich A., Matkovskaya T., Novikov E. Investigations of Single-Mode Optical Fiber Microbending Properties. Proceedings of Telecommunication Universities. 2023;9(4):15-20. (In Russ.) https://doi.org/10.31854/1813-324X-2023-9-4-15-20