Methodology for Accounting the Influence of Parameters of a Spherical Underlying Surface with Finite Conductivity on VLF Antennas Characteristics
https://doi.org/10.31854/1813-324X-2023-9-3-60-66
Abstract
The Earth's underlying surface has a significant impact on the characteristics of antennas and the energy parameters of the radio path. Although the theoretical aspects of the influence of the finite conductivity of the underlying surface on antennas have been sufficiently studied, there is a need for the development of a specific methodology that would allow to automize energy parameters calculations of radio paths using the wavehop method. This article presents a methodology for accounting for the electrical characteristics of the subsoil surface, which differs in its ability to use digital maps and automate calculations. It also includes separate calculation results for correcting antenna coefficients that confirm the theoretical calculations. The developed methodology can be used for calculations of energy parameters of radio paths using the wavehop method.
About the Authors
A. TipikinRussian Federation
D. Potapov
Russian Federation
References
1. Bradley P.A. IRI and VLF/LF radio service planning. Advances in Space Research. 2001;27(1):145–152. DOI:10.1016/ S0273-1177(00)00150-2
2. Cohen M.B., Inan U.S., Paschal E.W. Sensitive Broadband ELF/VLF Radio Reception with AWESOME instrument. IEEE Transactions on Geoscience and Remote Sensing. 2010;48(1):3–17. DOI:10.1109/TGRS.2009.2028334
3. Lynn K. VLF Waveguide Propagation: The Basics. Proceedings of the 1st International Conference on Science with Very Low Frequency Radio Waves: Theory and Observations, 13–18 March 2010, Kolkata, India. 2010. vol.126(1). p.3–41. DOI:10.1063/1.3512893
4. Pal S., Basak T., Chakrabarti S.K. Results of Computing Amplitude and Phase of the VLF Wave Using Wave Hop Theory. Advances in Geosciences. 2011;27:1–11. DOI:10.1142/9789814355414_0001
5. Bilitza D. IRI the international Standard for the ionosphere. Advances in Radio Science. 2018;16:1‒11. DOI:10.5194/ars-16-1-2018
6. Fron A., Galkin I., Krankowski A., Bilitza D., H.-P. Manuel, Reinisch B., et al. Towards Cooperative Global Mapping of the Ionosphere: Fusion Feasibility for IGS and IRI with Global Climate VTEC Maps. Remote Sens. 2020;12(21):3531. DOI:10.3390/rs12213531
7. Galkin I., Fron A., Reinisch B., Hernández-Pajares M., Krankowski A., Nava B., et al. Global Monitoring of Ionospheric Weather by GIRO and GNSS Data Fusion. Atmosphere. 2022;13(3):371. DOI:10.3390/atmos13030371
8. Tipikin A.A., Potapov D.S. Evaluation of the electrical characteristics of the soil on the path of propagation of surface radio waves. Tekhnika radiosvyazi. 2022;1(52):19‒29. (in Russ.) DOI:10.33286/2075-8693-2022-52-19-29
9. Tipikin A.A. Method of obtaining global digital maps of underlying surface electric characteristics in the very low frequency band. Computing, Telecommunication and Control. 2022;15(1):7‒18. (in Russ.) DOI:10.18721/JCSTCS.15101
10. Rec. ITU-R P.684-7. Prediction of field strength at frequencies below about 150 kHz. September 2016.
11. Wait J., Conda A. Pattern of an antenna on a curved lossy surface. IRE Transactions on Antennas and Propagation. 1958;6(4):348–359. DOI:10.1109/TAP.1958.1144610
12. Hyovalti D.C. Computations of the antenna cut-back factor for LF radio waves. Tecnical note №330. Boulder Laboratories; 1965.
13. Knight P. MF propagation: a wavehop method for ionospheric field strength prediction. BBC eng. 1973;100:22–34.
14. Coleman C.J. Analysis and Modeling of Radio Wave Propagation. Cambridge: Cambridge University Press; 2017. 296 p.
15. Gonzalez G. Advanced Electromagnetic Wave Propagation Methods. Boca Raton: CRC Press; 2022. 708 p.
16. Tipikin A.A., Pykov E.V. A refined model of the height of the reflection point for the prediction method of radio tracks energy parameters in the very low frequency band. Proceedings of the All-Army Scientific and Practical Conference «Innovations in Armed Forces of the Russian Federation». St. Petersburg: Military Academy of Communications Publ.; 2022. (in Russ.)
17. Makarov G.I., Novikov V.V., Rybachek S.T. Propagation of radio waves in the Earth–ionosphere waveguide channel and in the ionosphere. Moscow: Nauka Publ.; 1994. 152 p. (in Russ.)
18. Tipikin A.A., Pykov E.V., Rozanov A.A. A modified method for calculating the differential time delays of rays in the wave-hop model of radio waves propagation in the VLF band. Proceedings of the Scientific and Technical conference on Intellectual investigations in the interests of the development and improvement of the Navy. 2022. p.47–56. (in Russ.)
Review
For citations:
Tipikin A., Potapov D. Methodology for Accounting the Influence of Parameters of a Spherical Underlying Surface with Finite Conductivity on VLF Antennas Characteristics. Proceedings of Telecommunication Universities. 2023;9(3):60-66. (In Russ.) https://doi.org/10.31854/1813-324X-2023-9-3-60-66