Preview

Proceedings of Telecommunication Universities

Advanced search

A Model for Integrating Edge Computing into an Air-Ground Network Structure and Offloading Traffic Method for High and Ultra-High Densities Internet of Things Networks

https://doi.org/10.31854/1813-324X-2023-9-3-42-59

Abstract

The scientific challenge of incorporating edge computing into the air-ground network architecture for high and ultra-high density Internet of Things networks is the focus of this article. These issues are particularly important right now because of the concept of "space‒air‒ground‒sea" inegrated networks. A mechanism for offloading traffic from the ground network to mobile edge computing servers on UAVs has also been devised. This network model suggests using mobile edge computing servers deployed on unmanned aerial vehicles (UAVs) to reduce latency and power consumption. At the same time, a software profiler is utilized on the terminal devices to identify the difficulty of the computed task and, based on that determination, a three-level technique for offloading traffic is used.

About the Author

A. Muthanna
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation


References

1. Dunaytsev R.A., Borodin A.S., Koucheryavy A.E. Space-air-ground-sea integrated networking as a basis for 6G networks. Electrosvyaz. 2022;10:5‒8. (in Russ.) DOI:10.34832/ELSV2022.35.10.001

2. Ateya A.A., Muthanna A., Makolkina M., Koucheryavy A. Study of 5G Services Standardization: Specifications and Requirements. Proceedings of the10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, ICUMT, 05‒09 November 2018, Moscow, Russia. IEEE; 2018. DOI:10.1109/ICUMT.2018.8631201

3. Guo F., Yu F.R., Zhang H., Li X., Ji H., Leung V.C.M. Enabling Massive IoT Toward 6G: A Comprehensive Survey. IEEE Internet of Things Journal. 2021;8(15):11891–11915. DOI:10.1109/JIOT.2021.3063686

4. Laghari A.A., Wu K., Laghari R.A., Ali M., Khan A.A. A Review and State of Art of Internet of Things (IoT). Archives of Computational Methods in Engineering. 2022;29(3):1395–1413. DOI:10.1007/s11831-021-09622-6

5. Ateya A.A., Algarni A.D., Hamdi M., Koucheryavy A., Soliman N.F. Enabling Heterogeneous IoT Networks over 5G Networks with Ultra-Dense Deployment—Using MEC/SDN. Electronics. 2021;10(8):910. DOI:10.3390/electronics10080910

6. Bhuiyan M.N., Rahman M.M., Billah M.M., Saha D. Internet of Things (IoT): A Review of Its Enabling Technologies in Healthcare Applications, Standards Protocols, Security, and Market Opportunities. IEEE Internet of Things Journal. 2021;8(13):10474–10498. DOI:10.1109/JIOT.2021.3062630

7. Carvalho G., Cabral B., Pereira V., Bernardino J. Edge computing: current trends, research challenges and future directions. Computing. 2021;103:993–1023. DOI:10.1007/s00607-020-00896-5

8. Haibeh L.A., Yagoub M.C.E., Jarray A. A Survey on Mobile Edge Computing Infrastructure: Design, Resource Management, and Optimization Approaches. IEEE Access. 2022;10:27591–27610. DOI:10.1109/ACCESS.2022.3152787

9. Cruz P., Achir N., Viana A.C. On the Edge of the Deployment: A Survey on Multiaccess Edge Computing. ACM Computing Surveys. 2022;55(5):1‒34. DOI:10.1145/3529758

10. Kong L., Tan J., Huang J., Chen G., Wang S., Jin X., et al. Edge-computing-driven Internet of Things: A survey. ACM Computing Surveys. 2022;55(8):1‒41. DOI:10.1145/3555308

11. Mohsan S.A.H., Khan M.A., Noor F., Ullah I., Alsharif M.H. Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones. 2022;6(6):147. DOI:10.3390/drones6060147

12. Amarasingam N., Salgadoe A.S.A., Powell K., Gonzalez L.F., Natarajan S. A review of UAV platforms, sensors, and applications for monitoring of sugarcane crops. Remote Sensing Applications: Society and Environmentvol. 2022;26:100712. DOI:10.1016/j.rsase.2022.100712

13. Liu Y., Dai H.-N., Wang Q., Shukla M.K., Imran M. Unmanned aerial vehicle for internet of everything: Opportunities and challenges. Computer Communications. 2020;155:66–83. DOI:10.1016/j.comcom.2020.03.017

14. Pakrooh R., Bohlooli A. A Survey on Unmanned Aerial Vehicles-Assisted Internet of Things: A Service-Oriented Classification. Wireless Personal Communications. 2021;119(2):1541–1575. DOI:10.1007/s11277-021-08294-6

15. Idrissi M., Salami M., Annaz F. A Review of Quadrotor Unmanned Aerial Vehicles: Applications, Architectural Design and Control Algorithms. Journal of Intelligent & Robotic Systems. 2022;104. DOI:10.1007/s10846-021-01527-7

16. Labib N.S., Brust M.R., Danoy G., Bouvry P. The Rise of Drones in Internet of Things: A Survey on the Evolution, Prospects and Challenges of Unmanned Aerial Vehicles. IEEE Access. 2021;9:115466–115487. DOI:10.1109/ACCESS.2021.3104963

17. Siddharthraju K., Dhivyadevi R., Supriya M., Jaishankar B., Shanmugaraja T. A Survey on IoE‐Enabled Unmanned Aerial Vehicles. In: Mohindru V., Singh Y., Bhatt R., Gupta A.K. (Ed.) Unmanned Aerial Vehicles for Internet of Things (IoT). Wiley; 2021. p.173–192. DOI:10.1002/9781119769170.ch10

18. Shehzad M.K., Ahmad A., Hassan S.A., Jung H. Backhaul-Aware Intelligent Positioning of UAVs and Association of Terrestrial Base Stations for Fronthaul Connectivity. IEEE Transactions on Network Science and Engineering. 2021;8(4):2742–2755. DOI:10.1109/TNSE.2021.3077314

19. Alsamhi S.H., Shvetsov A.V., Kumar S., Hassan J., Alhartomi M.A., Shvetsova S.V., et al. Computing in the Sky: A Survey on Intelligent Ubiquitous Computing for UAV-Assisted 6G Networks and Industry 4.0/5.0. Drones. 2022;6(7):177. DOI:10.3390/drones6070177

20. Yazid Y., Ez-Zazi I., Guerrero-González A., El Oualkadi A., Arioua M. UAV-Enabled Mobile Edge-Computing for IoT Based on AI: A Comprehensive Review. Drones. 2021;5(4):148. DOI:10.3390/drones5040148

21. Zhang S., Liu W., Ansari N. Joint Wireless Charging and Data Collection for UAV-Enabled Internet of Things Network. IEEE Internet of Things Journal. 2022;9(23):23852‒23859. DOI:10.1109/JIOT.2022.3190813

22. Beniwal G., Singhrova A. A systematic literature review on IoT gateways. Journal of King Saud University ‒ Computer and Information Sciences. 2021;34(10):9541‒9563. DOI:10.1016/j.jksuci.2021.11.007

23. Jeong S., Simeone O., Kang J. Mobile cloud computing with a UAV‐mounted cloudlet: optimal bit allocation for communi-cation and computation. IET Communications. 2017;11(7):969–974. DOI:10.1049/iet-com.2016.1114

24. Jeong S., Simeone O., Kang J. Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path Planning. IEEE Transactions on Vehicular Technology. 2018;67(3):2049–2063. DOI:10.1109/TVT.2017.2706308

25. Ateya A.A.A., Muthanna A., Kirichek R., Hammoudeh M., Koucheryavy A. Energy- and Latency-Aware Hybrid Offloading Algorithm for UAVs. IEEE Access. 2019;7:37587–37600. DOI:10.1109/ACCESS.2019.2905249

26. Solomon M.G., Kim D. Fundamentals of communications and networking. Jones & Bartlett Learning; 2021.

27. Ateya A.A.A., Muthanna A., Gudkova I., Gaidamaka Y., Algarni A.D. Latency and energy-efficient multi-hop routing proto-col for unmanned aerial vehicle networks. International Journal of Distributed Sensor Networks. 2019;15(8). DOI:10.1177/ 1550147719866392

28. Castelli M., Manzoni L., Mariot L., Nobile M.S., Tangherloni A. Salp Swarm Optimization: A critical review. Expert Systems with Applications. 2022;189:116029. DOI:10.1016/j.eswa.2021.116029

29. Pradhan A., Bisoy S.K., Das A. A survey on PSO based meta-heuristic scheduling mechanism in cloud computing environ-ment. Journal of King Saud University ‒ Computer and Information Sciences. 2022;34(8):4888–4901. DOI:10.1016/j.jksuci. 2021.01.003

30. Parthiban S., Harshavardhan A., Neelakandan S., Prashanthi V., Alolo A.-R.A.A., Velmurugan S. Chaotic Salp Swarm Optimi-zation-Based Energy-Aware VMP Technique for Cloud Data Centers. Computational Intelligence and Neuroscience. 2022; 2022:4343476. DOI:10.1155/2022/4343476

31. Sliwa B., Patchou M., Wietfeld C. Lightweight Simulation of Hybrid Aerial- and Ground-Based Vehicular Communication Networks. Proceedings of the 90th Vehicular Technology Conference, VTC2019-Fall, 22‒25 September 2019, Honolulu, USA. IEEE; 2019. DOI:10.1109/VTCFall.2019.8891340

32. Goyal T., Singh A., Agrawal A. Cloudsim: simulator for cloud computing infrastructure and modeling. Procedia Engineer-ing. 2012;38:3566‒3572. DOI:10.1016/j.proeng.2012.06.412


Review

For citations:


Muthanna A. A Model for Integrating Edge Computing into an Air-Ground Network Structure and Offloading Traffic Method for High and Ultra-High Densities Internet of Things Networks. Proceedings of Telecommunication Universities. 2023;9(3):42-59. (In Russ.) https://doi.org/10.31854/1813-324X-2023-9-3-42-59

Views: 312


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)