Preview

Proceedings of Telecommunication Universities

Advanced search

Numerical Evaluation of the MU-MIMO Beamforming Performance with User Selection Algorithm

https://doi.org/10.31854/1813-324X-2023-9-2-65-71

Abstract

This paper presents the numerical evaluation of the ZF beamforming algorithm using the user selection in the multiuser multiantenna (MU-MIMO) downlink system. Two user selection algorithm – semiorthogonal user selection and greedy user selection are numerically evaluated based on the open source MIMO channel model. The sum rate performance depending on number of users are presented. The arising inter user correlation degrades the sum rate (spectral efficiency) performance of multiuser MIMO system especially in scenarios where the number of users is larger than the number of antennas at the BS. The selection of users is based on the orthogonality of the channels among selected users. For MIMO channel simulation the QUADRIGA channel model reflecting the real propagation conditions is used. The obtained performance of MU-MIMO ZF precoding in spatially correlated channel are compared based on the empirical cumulative density function of the sum rate of multiple users. Numerical results show that the ZF precoder using user selection (G ZF) outperforms the ZF precoder with random user selection in spectral efficiency. The greedy user selection in spatially correlated channel has advantage to semi-orthogonal user selection. It isobserved that as the increasing the number of served users used for selection the greedy user selection gives better performance than semi-orthogonal algorithm.

About the Author

A. Kalachikov
Siberian State University of Telecommunications and Information Science
Russian Federation

Novosibirsk, 630102, Russian Federation



References

1. Bjornson E., Hoydis J., Sanguinetti L. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency. Foundations and Trends in Signal Processing. 2017;11(3‒4):154‒655. DOI:10.1561/2000000093

2. Castaneda E., Silva A., Gameiro A., Kountouris M. An Overview on Resource Allocation Techniques for Multi-User MIMO Systems. IEEE Communications Surveys and Tutorials. 2017;19(1):239‒284. DOI:10.1109/COMST.2016.26188703. ETSI TS 38.211 V15.8.0 (2020-01). 5G; NR; Physical channels and modulation.

3. Yoo T., Goldsmith A. On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. IEEE Journal on Selected Areas in Communications. 2006;24(3):528‒541. DOI:10.1109/JSAC.2005.862421

4. Dimic G., Sidiropoulos N.D. On downlink beamforming with greedy userselection: Performance analysis and a simple new algorithm. IEEE Transactions on Signal Processing. 2005;53(10):3857‒3868. DOI:10.1109/TSP.2005.855401

5. Dimic G., Sidiropoulos N.D. On downlink beamforming with greedy userselection: Performance analysis and a simple new algorithm. IEEE Transactions on Signal Processing. 2005;53(10):3857‒3868. DOI:10.1109/TSP.2005.855401

6. Kaltenberger F., Gespert D., Knopp R., Kountouris M. Performance of Multi-User MIMO Precoding with Limited Feedback over Measured Channels. Proceedings of the IEEE Global Telecommunications Conference, IEEE GLOBECOM 2008, 30 November‒04 December 2008, New Orleans, USA. IEEE; 2008. DOI:10.1109/GLOCOM.2008.ECP.738

7. Cho Y.S., Kim J., Yang W.Y., Kang C.G. MIMO-OFDM Wireless Communications with MATLAB. John Wiley and Sons; 2010. 544 p.

8. ETSI TR 138.901 V16.1.0 (2020-11). 5G; Study on channel model for frequencies from 0,5 to 100 GHz.

9. Clerckx B., Kim G., Sung J. Correlated Fading in Broadcast MIMO Channels: Curse or Blessing? Proceedings of the IEEE Global Telecommunications Conference, IEEE GLOBECOM 2008, 30 November‒04 December 2008, New Orleans, USA. IEEE; 2008. DOI:10.1109/GLOCOM.2008.ECP.735

10. Jaeckel S., Raschkowski L., Börner K., Thiele L., Burkhardt F., Eberlein E. Quasi Deterministic Radio Channel Generator. User Manual and Documentation. QuaDRiGa. Document Revision: v2.2.0. Berlin: Fraunhofer Heinrich Hertz Institute; 2019.

11. Jaeckel S., Raschkowski L., Börner K., Thiele L. QuaDRiGa: A 3-D Multicell Channel Model with Time Evolution for Enabling Virtual Field Trials. IEEE Transactions on Antennas Propagation. 2014;62(6):3242‒3256. DOI:10.1109/TAP.2014.2310220


Review

For citations:


Kalachikov A. Numerical Evaluation of the MU-MIMO Beamforming Performance with User Selection Algorithm. Proceedings of Telecommunication Universities. 2023;9(2):65-71. (In Russ.) https://doi.org/10.31854/1813-324X-2023-9-2-65-71

Views: 367


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)