Preview

Proceedings of Telecommunication Universities

Advanced search

The Sensitivity Investigation of Fiber Optic Paths in the Framework of an Intruder Localization at a Protected Facility

https://doi.org/10.31854/1813-324X-2023-9-1-52-58

Abstract

The paper considers the possibility of using communication lines already existing at urban development sites based on such information transfer technologies as «fiber-to-the-office» and «fiber-to-the-desk» in relation to the tasks of physical protection of objects. The aspects of using distributed acoustic sensors based on a phase-sensitive optical time-domain reflectometer for localizing sources of acoustic impact in real-time, that is, for determining the location of an intruder on a protected object, are considered. The sensitivity of optical paths to acoustic influences corresponding to the speech signals of the alleged intruder was assessed. An optical path based on optical fiber in an optical module with a hydrophobic filling is considered. An analysis of the spectral sensitivity of the optical fiber samples under study has been carried out. An assessment of the influence of the conditions for the passage of the route of laying the optical cable and the interaction of the acoustic sensor with the surrounding objects was carried out. The analysis of the results obtained during the test events at the experimental site was carried out.

About the Authors

V. Kartak
Ufa State Aviation Technical University
Russian Federation

Ufa, Russian Federation



O. Gubareva
Povolzhskiy State University of Telecommunications and Informatics
Russian Federation

Samara, Russian Federation



M. Dashkov
Povolzhskiy State University of Telecommunications and Informatics
Russian Federation

Samara, Russian Federation



V. Gureev
Povolzhskiy State University of Telecommunications and Informatics
Russian Federation

Samara, Russian Federation



A. Evtushenko
Povolzhskiy State University of Telecommunications and Informatics
Russian Federation

Samara, Russian Federation



References

1. Segura-Garcia J., Felici-Castell S., Perez-Solano J.J., Cobos M., Navarro J.M. Low-Cost Alternatives for Urban Noise Nuisance Monitoring Using Wireless Sensor Networks. IEEE Sensors Journal. 2015;15(2):836–844. DOI:10.1109/JSEN.2014.2356342

2. Bertrand A. Applications and trends in wireless acoustic sensor networks: A signal processing perspective. Proceedings of the 18th IEEE Symposium on Communications and Vehicular Technology in the Benelux, SCVT, November 2011, Ghent, Belgium. IEEE; 2011. p.1–6. DOI:10.1109/SCVT.2011.6101302

3. Cheng L., Wu C., Zhang Y., Wu H., Li M., Maple C. A Survey of Localization in Wireless Sensor Network. International Journal of Distributed Sensor Networks. 2012;8(12):962523. DOI:10.1155/2012/962523

4. Liu H., Darabi H., Banerjee P., Liu J. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2007;37(6):1067–1080. DOI:10.1109/TSMCC.2007.905750

5. Wang H. Wireless sensor networks for acoustic monitoring. Ph.D. Theses. Los Angeles: University of California, 2006.

6. Priyantha N.B., Chakraborty A., Balakrishnan H. The Cricket location-support system. Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, MobiCom ’00, 6‒11 August 2000, Boston, USA. ACM; 2000. p.32–43. DOI:10.1145/345910.345917

7. Raykar V.C., Kozintsev I.V., Lienhart R. Position calibration of microphones and loudspeakers in distributed computing platforms. IEEE Transactions on Speech and Audio Processing. 2005;13(1):70–83. DOI:10.1109/TSA.2004.838540

8. Bucaro J.A., Dardy H.D., Carome E. F. Optical fiber acoustic sensor. Applied Optics. 1977;16(7):1761. DOI:10.1364/AO.16.001761

9. Kim B.Y., Blake J.N., Huang S.Y., Shaw H.J. Use of highly elliptical core fibers for two-mode fiber devices. Optics Letters. 1987;12(9):729. DOI:10.1364/OL.12.000729

10. Wang Y., Yuan H., Liu X., Bai Q., Zhang H., Gao Y., et al. A Comprehensive Study of Optical Fiber Acoustic Sensing. IEEE Access. 2019;7:85821–85837. DOI:10.1109/ACCESS.2019.2924736

11. Wild G., Hinckley S. Acousto-Ultrasonic Optical Fiber Sensors: Overview and State-of-the-Art. IEEE Sensors Journal. 2008;8(7):1184–1193. DOI:10.1109/JSEN.2008.926894

12. Gubareva O.Y. Potential capabilities of optical distributed acoustic sensors to determine the location of an intruder. Proceedings of the 18th International Scientific and Technical Conference on Optical Technologies for Telecommunications, 17‒20 November 2020, Samara, Russian Federation. 2021:33. DOI:10.1117/12.2593047

13. Burdin V.A., Gubareva O.Y. Method of simplex data transmission over an optical fiber of a cable line. Patent RF no. 2702983 C1, 14.10.2019. (in Russ.)

14. Treshchikov V.N. Dunay software and hardware complex. 2019. URL: https://t8.ru/wp-content/uploads/2019/01/Dunay-2019-eng.pdf.

15. Groznov D.I., Leonov A.V., Naniy O.E., Nesterov E.T., Treshchikov V.N. Dunay ‒ a system for monitoring of activity in the buffer zone of the pipeline. Oil Gas Expo. 2014;4(36):51‒53. (in Russ.)

16. Treshchikov V.N., Naniy O.E. Distributed sensor of acoustic and vibration actions. Patent RF no. 2532562 C1, 10.11.2014. (in Russ.)

17. Blake J.N., Engan H.E., Shaw H.J., Kim B.Y. Analysis of intermodal coupling in a two-mode fiber with periodic microbends. Optics Letters. 1987;12(4):281. DOI:10.1364/OL.12.000281

18. Gubareva O., Gureev V., Osipov O. Algorithms for Determining the Location of an Intruder Using DAS in Space. Proceedings of the VIII International Conference on Information Technology and Nanotechnology, ITNT, 23‒27 May 2022, Samara, Russian Federation. IEEE; 2022. p.1–6. DOI:10.1109/ITNT55410.2022.9848680

19. Gubareva O.Y., Burdin V.A., Gureev V.O., Dashkov M.V., Gavryushin S.A., Masyuk S.S., et al. Localization method for all-dielectric fiber-optic cable. Proceedings of the XIX International Scientific and Technical Conference on Optical Technologies for Telecommunications, 23‒26 November 2021, Samara, Russian Federation. 2022. p.27. DOI:10.1117/12.2631780

20. Pan Z., Liang K., Ye Q., Cai H., Qu R., Fang Z. Phase-sensitive OTDR system based on digital coherent detection. Proceedings of the Conference and Exhibition on Optical Sensors and Biophotonics, 13–16 November 2011, Shanghai, China. 2011. p.83110S. DOI:10.1364/ACP.2011.83110S

21. Wang S., Fan X., Liu Q., He Z. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR. Optics Express. 2015;23(26):33301. DOI:10.1364/OE.23.033301

22. Fenta M.C., Potter D.K., Szanyi J. Fibre Optic Methods of Prospecting: A Comprehensive and Modern Branch of Geophysics. Surveys in Geophysics. 2021;42(3):551–584. DOI:10.1007/s10712-021-09634-8

23. Huang Y., Benesty J. Audio Signal Processing for Next-Generation Multimedia Communication Systems. Boston: Kluwer Academic Publishers; 2004. URL: http://link.springer.com/10.1007/b117685 [Accessed 29th May 2022]


Review

For citations:


Kartak V., Gubareva O., Dashkov M., Gureev V., Evtushenko A. The Sensitivity Investigation of Fiber Optic Paths in the Framework of an Intruder Localization at a Protected Facility. Proceedings of Telecommunication Universities. 2023;9(1):52-58. (In Russ.) https://doi.org/10.31854/1813-324X-2023-9-1-52-58

Views: 366


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)