Usage of LDPC Codes in a Gilbert Channel
https://doi.org/10.31854/1813-324X-2022-8-4-55-63
Abstract
Although low-density parity-check (LDPC) codes in modern communication standards have been extensively studied over a memoryless channel, their burst error correction capacity in channels with memory has yet to be thoroughly analyzed. The conventional approach to transmission in channels with memory uses interleaving within a buffer of several codewords. However, such an approach reduces the efficiency of the redundancy embedded by the error-correcting code. It is known from information theory that considering channel memory during decoding allows the transmission rate to be increased. An evaluation of the decoding error probability of different types of low-density parity-check codes in channels with memory is presented along with estimates of minimum distance and burst error correction capability for the considered codes. The decoding error probability is estimated for conventional decoding with deinterleaving and decoding taking channel memory into account. The decoding error probability is estimated for several parameters of a channel with memory and different buffer lengths. The obtained results reveal the absence of the unique decoding approach for all parameters of the channel with memory. The best decoding error probability is determined by the degree of channel memory correlation.
About the Authors
A. OvchinnikovRussian Federation
Andrey Ovchinnikov
Saint Petersburg, 190000
A. Veresova
Russian Federation
Alina Veresova
Saint Petersburg, 190000
A. Fominykh
Russian Federation
Anna Fominykh
Saint Petersburg, 190000
References
1. Lin S., Li J. Fundamentals of Classical and Modern Error-Correcting Codes. Cambridge: Cambridge University Press; 2022, 840 p.
2. Gallager R. Low-density parity-check codes. IRE Transactions on Information Theory. 1962;8(1):21–28. DOI:10.1109/TIT.1962.1057683
3. ETSI TS 138 212 V15.3.0 (2018-10). 5G. NR. Multiplexing and channel coding (3GPP TS 38.212 version 15.3.0 Release 15). Technical Specification. 101 p.
4. Holton T. Digital Signal Processing: Principles and Applications. Cambridge: Cambridge University Press; 2021. 1058 p.
5. Eckford A.W., Kschischang F.R., Pasupathy S. Analysis of low-density parity-check codes for the Gilbert-Elliott channel. IEEE Transactions on Information Theory. 2005;51(11):3872–3889. DOI:10.1109/TIT.2005.856934
6. Eckford A.W., Kschischang F.R., Pasupathy S. On Designing Good LDPC Codes for Markov Channels. IEEE Transactions on Information Theory. 2006;53(1):5–21. DOI:10.1109/TIT.2006.887467
7. Veresova A.M., Ovchinnikov A.A. Comparison of the Probability of Reed ‒ Solomon and LDPC Codes Decoding Error in the Gilbert-Elliott Channel. Proceedings of the Conference on Wave Electronics and its Application in Information and Telecommunication Systems, WECONF, 30 May‒03 June 2022, St. Petersburg, Russia. IEEE; 2022. DOI:10.1109/WECONF55058.2022.9803501
8. Shannon C.E. A mathematical theory of communication. The Bell System Technical Journal. 1948;27(3):379–423. DOI:10.1002/j.1538-7305.1948.tb01338.x
9. Gilbert E.N. Capacity of a Burst-Noise Channel. Bell System Technical Journal. 1960;39(5):1253–1265. DOI:10.1002/j.1538-7305.1960.tb03959.x
10. Elliott E.O. Estimates of error rates for codes on burst-noise channels. The Bell System Technical Journal. 1963;42(5): 1977–1997. DOI:10.1002/j.1538-7305.1963.tb00955.x
11. Richardson T., Urbanke R. Modern Coding Theory. Cambridge: Cambridge University Press; 2008. 590 p.
12. Stern J. A method for finding codewords of small weigh. Proceedings of the 3rd International Colloquium on Coding Theory and Applications, 2‒4 November 1988, Toulon, France. Lecture Notes in Computer Science, vol.388. Berlin, Heidelberg: Springer; 1988. p.106–113. DOI:10.1007/BFb0019850
13. Hu X.-Y., Fossorier M.P.C., Eleftheriou E. On the computation of the minimum distance of low-density parity-check codes. Proceedings of the International Conference on Communications (IEEE Cat. No.04CH37577), 20‒24 June 2004, Paris, France, vol. 2. IEEE; 2004. p.767–771. DOI:10.1109/ICC.2004.1312605
14. MacKay D.J.C. Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory. 1999;45(2):399–431. DOI:10.1109/18.748992
15. Krouk E., Ovchinnikov A. Exact Burst-Correction Capability of Gilbert Codes. Informatsionno-upravliaiushchie sistemy. 2016;1:80–87. DOI:10.15217/issn1684-8853.2016.1.80
16. Fossorier M.P.C. Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Transactions on Information Theory. 2004;50(8):1788–1793. DOI:10.1109/TIT.2004.831841
17. Krouk E., Ovchinnikov A. 2-Stripes Block-Circulant LDPC Codes for Single Bursts Correction. Proceedings of the 9th International KES Conference on Intelligent Interactive Multimedia: Systems and Services, KES-IIMSS-16, 15‒17 June 2016, Puerto de la Cruz, Tenerife, Spain. Smart Innovation, Systems and Technologies, vol.55. Cham: Springer; 2016. p.11–23. DOI:10.1007/978-3-319-39345-2_2
18. Veresova A.M., Ovchinnikov A.A. About One Algorithm for Correcting Bursts Using Block-Permutation LDPC-Codes. Proceedings of the Conference on Wave Electronics and its Application in Information and Telecommunication Systems, WECONF, 03‒07 June 2019, St. Petersburg, Russia. IEEE; 2019. DOI:10.1109/WECONF.2019.8840580
Review
For citations:
Ovchinnikov A., Veresova A., Fominykh A. Usage of LDPC Codes in a Gilbert Channel. Proceedings of Telecommunication Universities. 2022;8(4):55-63. https://doi.org/10.31854/1813-324X-2022-8-4-55-63