Preview

Proceedings of Telecommunication Universities

Advanced search

Modified Algorithm for Detecting Network Attacks Using the Fractal Dimension Jump Estimation Method in Online Mode

https://doi.org/10.31854/1813-324X-2022-8-3-117-126

Abstract

The paper considers a modification of the well-known algorithm for detecting anomalies in network traffic using a real-time fractal dimension jump estimation method. The modification uses real-time thresholding to provide additional filtering of the estimated fractal network traffic dimension. The accuracy of the current estimate of the fractal dimension and the reliability of anomaly detection in network traffic in online mode is improved by adding extra filtering to the algorithm.

About the Authors

O. Sheluhin
Moscow Technical University of Communications and Informatics
Russian Federation

Oleg Sheluhin

Moscow, 111024



S. Rybakov
Moscow Technical University of Communications and Informatics
Russian Federation

Sergey Rybakov

Moscow, 111024



A. Vanyushina
Moscow Technical University of Communications and Informatics
Russian Federation

Anna Vanyushina

Moscow, 111024



References

1. Ahmed M., Mahmood A.N., Hu J. A survey of network anomaly detection techniques. Journal of Network and Computer Applications. 2016;60:19‒31. DOI:10.1016/j.jnca.2015.11.016

2. Sheluhin O.I., Osin A.V., Smolsky S.M. Self-Similarity and Fractals. Telecommunication Applications. Moscow: Fizmatlit Publ.; 2008. 368 p. (in Russ.)

3. Basarab M., Stroganov I. Anomaly Detection in Information Processes Based on Multifractal Analysis. Voprosy kiberbezopasnosti. 2014;4(7):30‒40. (in Russ.)

4. Sheluhin O.I., Lukin I.Yu. Network Traffic Anomalies Detection Using a Fixing Method of of Multifractal Dimension Jumps in a Real-Time Mode. Automatic Control and Computer Sciences. 2018;52(5):421‒430. DOI:10.3103/S0146411618050115

5. Bhuyan M.H., Bhattacharyya D.K., Kalita J.K. Network Anomaly Detection: Methods, Systems and Tools. IEEE Communications Surveys & Tutorials. 2013;60(1):303–336. DOI:10.1109/SURV.2013.052213.00046

6. Chandola V., Banerjee A., Kumar V. Anomaly Detection for Discrete Sequences: A Survey. IEEE Transactions on Knowledge and Data Engineering. 2012;24(5):823‒839. DOI:10.1109/TKDE.2010.235

7. Sheluhin O.I., Rybakov S.Y., Magomedova D.I. Audio Steganography Method Using Determined Chaos. H&ES Research. 2021;13(1):80‒91. (in Russ.) DOI:10.36724/2409-5419-2021-13-1-80-91

8. Sheluhin O.I., Sirukhi J.W., Pankrushin A.V. Wavelet type selection in the problem of anomaly intrusions detection in computer networks using multifractal analysis methods. T-Comm. 2015;9(4):88‒92.

9. Mallat S. A Wavelet Tour of Signal Processing: The Sparse Way. Burlington: Academic Press; 2008. 832 p.

10. Kaur G., Saxena V., Prakash J. Study of Self-Similarity for Detection of Rate-Based Network Anomalies. International Journal of Security and Its Applications. 2017;11(8):27–44. DOI:10.14257/ijsia.2017.11.8.03

11. Riedi R.H., Crouse M.S., Ribeiro V.J., Baraniuk R.G. A Multifractal Wavelet Model with Application to Network Traffic. IEEE Transactions on Information Theory. 1999;45(3):992–1018. DOI:10.1109/18.761337

12. Basarab M.A., Sheluhin O.I., Konovalov I.A. Assessment of the Thresholding Impact on Reliability of Anomaly Detection in Network Traffic Using Statistical Approach. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering. 2018;5(122):56‒67. DOI:10.18698/0236-3933-2018-5-56-67

13. Zhang Y., Ding W., Pan Z., Qin J. Improved Wavelet Threshold for Image De-noising. Frontiers in Neuroscience. 2019; 13:39. DOI:10.3389/fnins.2019.00039

14. Delignières D. Correlation Properties of (Discrete) Fractional Gaussian Noise and Fractional Brownian Motion. Mathematical Problems in Engineering. 2015:485623. DOI:10.1155/2015/485623

15. Li M. Generalized fractional Gaussian noise and its application to traffic modeling. Physica A: Statistical Mechanics and Its Applications. 2021:579. 126138. DOI:10.1016/j.physa.2021.126138

16. Li M., Sun X., Xiao X. Revisiting fractional Gaussian noise. Physica A: Statistical Mechanics and Its Applications. 2019;514: 56–62. DOI:10.1016/j.physa.2018.09.008

17. Brouste A., Soltane M., Votsi I. One-step estimation for the fractional Gaussian noise at high-frequency. ESAIM: Probability and Statistics. 2020;24:827‒841. DOI:10.1051/ps/2020022

18. Sørbye S.H., Rue H. Fractional Gaussian noise: Prior specification and model comparison. Environmetrics. 2017;29(5-6): e2457. DOI:10.1002/env.2457


Review

For citations:


Sheluhin O., Rybakov S., Vanyushina A. Modified Algorithm for Detecting Network Attacks Using the Fractal Dimension Jump Estimation Method in Online Mode. Proceedings of Telecommunication Universities. 2022;8(3):117-126. (In Russ.) https://doi.org/10.31854/1813-324X-2022-8-3-117-126

Views: 407


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)