Statistical Arithmetic Coding Algorithm Adaptive to Correlation Properties of Wavelet Transform Coefficients
https://doi.org/10.31854/1813-324X-2022-8-3-6-12
Abstract
It is shown that, in order to increase the compression ratio in the course of statistical arithmetic coding, it is necessary to take into account the conditional probabilities of code symbols when the preceding symbols appear. The problem of obtaining the location of the most significant symbols when encoding the current symbol is solved by calculating the autocorrelation function of the encoded symbols. An algorithm for arithmetic coding and decoding is provided, which takes into account the dependencies between the coefficients of the wavelet transform and the results of modeling its operation.
About the Authors
S. DvornikovRussian Federation
Sergei Dvornikov
St. Petersburg, 190000
St. Petersburg, 194064
A. Ustinov
Russian Federation
Andrei Ustinov
St. Petersburg, 194064
I. Okov
Russian Federation
Igor Okov
St. Petersburg, 194064
References
1. Makhov D.S., Finko O.A. The Method of Spatio-Temporal Coding of Information in Parallel Radio Channels of Radio Engineering Systems. Proceedings of the Mozhaisky Military Space Academy. 2020;675:95‒107. (in Russ.)
2. Umbitaliev A.A., Dvornikov S.V., Okov I.N., Ustinov A.A. Compression Method Graphic Files Using Wavelet Transform. Voprosy radioelectronics. Series: TV Technique. 2015;3:100‒106. (in Russ.)
3. Nuralin D.G., Shevelev S.V. Comparative analysis of modern lossless image compression methods. Telecommunications and information technologies. 2019;6(2):129‒134. (in Russ.)
4. Dvornikov S.V., Ustinov A.A., Okov I.N., Tsarelungo A.B., Dvorovoi M.O., Tsvetkov V.V. Compression of Graphic Files Through the Risez Procedure. Voprosy radioelectronics. Series: TV Technique. 2017;4:77‒86. (in Russ.)
5. Stefanovich A.I., Sushko D.V. Reversible Data Compression By Universal Arithmetic Coding. Informatics and Applications. 2017;11(1):20‒45. (in Russ.) DOI:10.14357/19922264170103
6. Strelnikov S.E., Ponomarev O.G., Baholdina M.A., Sharabayko M.P. SBAC Hardware Implementation for H.265/HEVC Video Encoder. Russian Physics Journal. 2015;58(8-2):301‒303. (in Russ.)
7. Okov I.N., Ustinov A.A., Ageeva N.S. The method of joint arithmetic and noise-immune coding and decoding. Proceedings of the All-Army Scientific and Practical Conference on Innovative Activity in the Armed Forces of the Russian Federation, 14–15 October 2020, St. Petersburg, Russia. St. Petersburg: Military Signal Academy Publ.; 2020. p.185‒190. (in Russ.)
8. Im S.-K., Chan K.-H. Higher precision range estimation for context-based adaptive binary arithmetic coding. IET Image Processing. 2020;14(1):125‒131. DOI:10.1049/iet-ipr.2018.6602
9. Karwowski D. Precise Estimation of Probabilities in CABAC Using the Cauchy Optimization Method. IEEE Access. 2020;8:32088‒32099. DOI:10.1109/ACCESS.2020.2973549
10. Suzuki J., Colin F., Ono S. Arithmetic codec from behavioral description based LSI-CAD for fully programmable image coding system. Proceedings of the International Conference on Acoustics, Speech and Signal Processing, ICASSP '94, 19‒22 April 1994, Adelaide, Australia. IEEE; 1994. vol.2. p.II/421-II/424. DOI:10.1109/ICASSP.1994.389631
11. Simonov A., Fokin G., Sevidov V., Sivers M., Dvornikov S. Polarization Direction Finding Method of Interfering Radio Emission Sources. Proceedings of the 19th Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2019), 12th Conference on Internet of Things and Smart Spaces (ruSMART 2019), 26–28 August 2019, St. Petersburg, Russia. Lecture Notes in Computer Science (LNCS, vol.11660). Springer: Cham; 2019. DOI:10.1007/978-3-030-30859-9_18
12. Dvornikov S.V., Step’nin D.V., Dvornikov A.S., Bukareva A.P. Formation of Vectors Signs Signals from Wavelet-Coefficients of Their Frame Transforms. Information Technologies. 2013;5:46‒49. (in Russ.)
13. Logunova O., Bagaev I., Arefeva D., Garbar E. Efficient Information Support of the Automatic Process and Production Control System. Proceedings of the 8th International Conference on Analysis of Images, Social Networks and Texts, AIST 2019, 17–19 July 2019, Kazan, Russia. Communications in Computer and Information Science (CCIS, vol.1086). Cham: Springer; 2020. p.244–255. DOI:10.1007/978-3-030-39575-9_25
14. Kuznetsova A.A. On the proof of the entanglement-assisted coding theorem for a quantum measurement channel. Lobachevskii Journal of Mathematics. 2021;42(10):2377‒2385. DOI:10.1134/S1995080221100140
15. Volchikhin V., Ivanov A., Gazin A. Possibility to increase the chi-square test power on small samples by means of transition towards analyzing of it's discrete spectrum. Periodico Tche Quimica. 2019;16(33):41‒52.
16. Zhang H., Hong X., Zhou S., Wang Q. Infrared Image Segmentation for Photovoltaic Panels Based on Res-UNet. Proceedings of the 2nd Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2019, 8–11 November 2019, Xi’an, China. Lecture Notes in Computer Science (LNCS, vol.11857). Springer: Cham; 2019. p.611‒622. DOI:10.1007/978-3-030-31654-9_52
17. Gatt V., Lauri J., Klin M., Liskovets V. From Schur Rings to Constructive and Analytical Enumeration of Circulant Graphs with Prime-Cubed Number of Vertices. Proceedings of the International Workshop on Isomorphisms, Symmetry and Computations in Algebraic Graph Theory, WAGT 2016, 3–7 October 2016, Pilsen, Czech Republic. Springer Proceedings in Mathematics & Statistics (vol.305). Springer: Cham; 2020. p.37‒65. DOI:10.1007/978-3-030-32808-5_2
18. Savchenko A.V. The maximal likelihood enumeration method for the problem of classifying piecewise regular objects. Automation and Remote Control. 2016;77(3):443‒450. DOI:10.1134/S0005117916030061
19. Kato H., Ogawa T., Ohta H., Katayama Y. Enumeration of Chemoorganotrophic Carbonyl Sulfide (COS)-degrading Microorganisms by the Most Probable Number Method. Microbes and Environments. 2020;35(2):ME19139. DOI:10.1264/jsme2.ME19139
20. De Panafieu É., Dovgal S. Symbolic method and directed graph enumeration. Acta Mathematica Universitatis Comenianae. 2019;88(3):989‒996. DOI:10.48550/arXiv.1903.09454
21. Simonov A.N., Volkov R.V., Dvornikov S.V. Fundamentals of Construction and Operation of Goniometric Systems for Coordinate Measurement of Radio Emission Sources. St. Petersburg: Military Signal Academy Publ.; 2017. 248 p. (in Russ.)
22. Batenkov K.A. Accurate and boundary estimate of communication network connectivity probability based on model state complete enumeration method. SPIIRAS Proceedings. 2019;18(5):1093‒1118. (in Russ.) DOI:10.15622/sp.2019.18.5.1093-1118
23. Kong W.-L., Miki T., Lin Y.-Y., Makino W., Urabe J., Gu S.-H., Machida R.J. Nuclear and mitochondrial ribosomal ratio as an index of animal growth rate. Limnology and Oceanography: Methods. 2019;17(11):575‒584. DOI:10.1002/lom3.10334
24. Farahi A., Mulroy S.L., Evrard A.E., Smith G.P., Finoguenov A., Bourdin H., et al. Detection of anti-correlation of hot and cold baryons in galaxy clusters. Nature Communications. 2019;10(1):2504. DOI:10.1038/s41467-019-10471-y
25. He D., Cai Q. Correlation and the black hole information loss problem. Chinese Science Bulletin (Chinese Version). 2018; 63(30):3089‒3095.
26. Dvornikov S., Yaheev A. Method of fast signal parameters measurement on the basis of distribution suggested by Alekseev. Informatsiya i kosmos. 2011;1:66‒74 (in Russ.)
Review
For citations:
Dvornikov S., Ustinov A., Okov I. Statistical Arithmetic Coding Algorithm Adaptive to Correlation Properties of Wavelet Transform Coefficients. Proceedings of Telecommunication Universities. 2022;8(3):6-12. https://doi.org/10.31854/1813-324X-2022-8-3-6-12