Modeling of Correlation Optical Reflectometer with a Probing Signal in the Form of Pseudo-Random Sequences Fragments
https://doi.org/10.31854/1813-324X-2022-8-2-108-119
Abstract
Traditionally, the most informative means of measuring the parameters of linear optical paths of fiberoptic communication systems is an optical time domain reflectometer with a simple probing signal. The disadvantages of such a reflectometer are known limitations on the dynamic range and resolution. To improve the listed characteristics, the paper considers the possibility of using the technology of correlation reflectometers with a probing signal in the form of fragments of pseudo-random sequences. The study carried out in this work proves the advantages of such reflectometers over traditional ones.
About the Author
V. KhrichkovRussian Federation
St. Petersburg, 193232
References
1. Shiketants D. Theory of Measurements by the Method of Backscattering in Optical Fibers. Zarubezhnaia elektronika. 1984;6:87‒94. (in Russ.)
2. Bylina M.S., Glagolev S.F., Kochanovsky L.N., Piskunov V.V. Measurement of Parameters of Fiber-Optic Linear Paths. St. Petersburg: The Bonch-Bruevich Saint Petersburg State University of Telecommunications Publ.; 2002. 68 p. (in Russ.)
3. Svintsov A.G. Reflectometric Methods for Measuring FOCL Parameters. Metrologiia i izmeritelnaia tekhnika v sviazi. 2002;5:64–65. (in Russ.)
4. Listvin A.V., Listvin V.N. Reflectometry of Optical Fibers. Moscow: LESA-Rart Publ.; 2005. 208 p. (in Russ.)
5. Aibatov D.L., Morozov O.G., Polsky Yu.E. Fundamentals of Reflectometry. Kazan: Novoe znanie Publ.; 2008 p. (in Russ.)
6. Anderson D.R., Johnson L., Bell F.G. Troubleshooting Optical Fiber Networks. Understanding and Using Your Optical Time-Domain Reflectometer. San Diego: Elsevier Academic Press; 2004. 437 p.
7. Hui R., O’Sullivan M. Fiber Optic Measurement Techniques. San Diego: Elsevier Academic Press; 2009. 630 p.
8. Bylina M.S., Glagolev S.F. Optical Fibers in Telecommunications. St. Petersburg: The Bonch-Bruevich Saint Petersburg State University of Telecommunications Publ.; 2019. 108 p. (in Russ.)
9. Andreev V.A., Burdin V.A., Baskakov V.S., Kosova A.L. FOCL Measurements by Backscattering Method. Samara: Samara Regional Telecommunications Training Center at the Povolzhskiy State University of Telecommunications & Informatics Publ.; 2000. 107 p. (in Russ.)
10. Newton S. A new technique in OTDR. Electronics and Wireless World. 1988;94(627):496‒500
11. Jones M. Using simplex codes to improve OTDR sensitivity. IEEE Photonics Technology Letters. 1993;5(7):822‒824. DOI:10.1109/68.229819
12. Arkhangelsky V.B., Glagolev S.F., Marchenko K.V., Semin A.V. Correlation Reflectometer with a Complex-Probing Signal. Foton-ekspress. 2004;5(37). (in Russ.)
13. Semin A.V., Arkhangelsky V.B., Glagolev S.F. Optical Correlation Reflectometer. Patent RU 37209, 10.04.2004. (in Russ.)
14. Semin A.V., Arkhangelsky V.B. Methods for Forming Complex Probing Signals for Optical Reflectometers. Proc. of Telecom. Universities. 2003;169:200‒213 (in Russ.)
15. Arkhangelsky V.B., Glagolev S.F., Khrichkov V.A. Optical Correlation Reflectometer. Patent RU 2759785 C1, 17.11.2021. (in Russ.)
16. Arkhangelsky V.B., Glagolev S.F., Khrichkov V.A. Signal Processing in an Optical Correlation Reflectometer Using Fragments of the M-Sequence for Probing a Fiber-Optic Path. Infokommunikacionnye tehnologii. 2021;19(3):298–303. (in Russ.) DOI:10.18469/ikt.2021.19.3.05
17. Arkhangelsky V.B., Glagolev S.F., Khrichkov V.A. Analog-to-Digital Storage Ring with Memory Ring. Infokommunikacionnye tehnologii. 2021;19(3):303–309. (in Russ.) DOI:10.18469/ikt.2021.19.3.06
Review
For citations:
Khrichkov V. Modeling of Correlation Optical Reflectometer with a Probing Signal in the Form of Pseudo-Random Sequences Fragments. Proceedings of Telecommunication Universities. 2022;8(2):108-119. (In Russ.) https://doi.org/10.31854/1813-324X-2022-8-2-108-119