Preview

Proceedings of Telecommunication Universities

Advanced search

Radiation Pattern Synthesis Method of Antenna Arrays with an Arbitrary Arrangement of Radiating Elements

https://doi.org/10.31854/1813-324X-2022-8-2-15-28

Abstract

As a result of the analysis of methods for synthesizing radiation patterns, in order to find the required amplitude-phase distribution in antenna arrays with an arbitrary arrangement of radiating elements, a technique based on the method of partial radiation patterns is proposed. The results of implementing the technique for a lowprofile combined ring concentric antenna array, a five-element antenna array based on asymmetric wave channel antennas, and a conformal antenna array consisting of arbitrarily located PIFA antennas are presented. The calculated amplitude-phase distributions and radiation patterns are given. The technique makes it possible to evaluate the potential capabilities of antennas, with adaptation taking into account the mutual coupling.

About the Authors

A. Andropov
Special Technology Center, LLC
Russian Federation

St. Petersburg, 195220



S. Kuzmin
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation

St. Petersburg, 193232



References

1. Voskresensky D.I. Microwave Devices and Antennas. Design of Phased Antenna Arrays. Moscow: Radiotekhnika Publ.; 2012. 744 p. (in Russ.)

2. GOST 23282-91. Antenna arrays. Terms and Definitions. Part 3. Moscow: Standartinform Publ.; 2005. (in Russ.)

3. Hansen R.S. Phased antenna arrays. Moscow: Technosfera Publ.; 2012. (in Russ.)

4. Krasyuk V.N. Antennas with Low Radio Visibility. St. Petersburg: Nauka Publ.; 2011. 671 p. (in Russ.)

5. Pimenov Y.V., Volman V.I., Muravtsov A.D. Technical Electrodynamics. Moscow: Radio i sviaz Publ.; 2000. 536 p. (in Russ.)

6. Kozlov D.S. The Influence of Mutual Coupling Effect on the Radiation Pattern Characteristics of the Nulling Phased Antenna Array. Journal of the Russian Universities. Radioelectronics (Izvestiya Vysshikh Uchebnykh Zavedenii Rossii. Radioelektronika). 2016;(2):69‒74. (in Russ.)

7. Korotetsky E.V., Shitikov A.M., Denisenko V.V. Methods of Phased Array Antenna Calibration. Radio engineering. 2013;5: 95‒104. (in Russ.)

8. Skobelev S.P. Phased Antenna Arrays with Sectoral Partial Radiation Patterns. Moscow: Fizmatlit Publ.; 2010. 318 p. (in Russ.)

9. Frantsuzov A.D. The Method of Partial Diagram for the Synthesis of Linear Antenna Arrays. Journal of the Russian Universities. Radioelectronics (Izvestiya Vysshikh Uchebnykh Zavedenii Rossii. Radioelektronika). 2014;5:3‒9. (in Russ.)

10. Drabowitch S., Papiernik A., Griffiths H.D., Encinas J., Smith B.L. Modern Antennas. Springer: Dordrecht; 2005. 710 p.

11. Van Trees H.L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. John Wiley & Sons: NewYork; 2002. 1472 p.

12. Zelkin E.G, Kravchenko V.F. Problems of Antenna Synthesis and New Methods for their Solution. Moscow: IPRZhR Publ.; 2002. 72 p. (in Russ.)

13. Vendik I.B., Kozlov D.S. Vendik O.G. Diagram Formation in Antenna Arrays. Moscow: Fizmatlit Publ.; 2020. 110 p. (in Russ.)

14. Kuzmin S.V., Korovin K.O., Raimzhanov T.R. An Implementation of Interactive Application for the Synthesis of Communication Systems with Antenna Arrays. Journal of the Russian Universities. Radioelectronics (Izvestiya Vysshikh Uchebnykh Zavedenii Rossii. Radioelektronika). 2020;23(2):46–54. (in Russ.) DOI:10.32603/1993-8985-2020-23-2-46-54.

15. Salomatov Yu.P., Panko V.S., Sugak M.I. Ring Emitters and Antenna Arrays. St. Petersburg: LETI Publ.; 2014. 119 p. (in Russ.)

16. Arik D.B. Electronically Scanned Arrays MATLAB® Modeling and Simulation. CRC Press: Boca Raton; 2012. 229 p. DOI:10.1201/b12044

17. Arkhipov N.S., Polyansky I.S., Somov A.M. Analysis and Structural-Parametric Synthesis of Mirror Antennas. Moscow: Goriachaia liniia Telekom Publ.; 2017. 225 p. (in Russ.)

18. Sosunov B.V., Borodulin R.Yu. Constructural Synthesis of Element of a Fased Array of Antennas. Computing, Telecommunication and Control. 2013;2(169):47‒54. (in Russ.)

19. Andropov A.V., Kuzmin S.V., Korovin K.O. Design of Airborne Dual-Band Low-Profile Antenna Array. International Youth Conference on Electronics, Telecommunications and Information Technologies, Proceedings of the YETI 2020, 10–11 July 2020, Russia, St. Petersburg. Springer Proceedings in Physics. Cham: Springer; 2021. vol.255. p.675‒681. DOI:10.1007/978-3-030-58868-7_74

20. Andropov A.V., Kuzmin S.V. Algorithm for Determining the Design of an Unbalanced Wave Channel Antenna with a Given Direction of Maximum Radiation in the Vertical Plane. Achievements of Modern Radioelectronics. 2021;75(4):87–92. (in Russ.) DOI:10.18127/j20700784-202104-12

21. Andropov A.V., Kanaev K.A., Kolmakov I.A., Popov O.V., Smirnov P.L. Airborne Antenna for an Unmanned Aerial Vehicle. Patent RF, no. 2715353 C1, 25.07.19. (in Russ.)

22. Grigoriev V.A., Schesnyak S.S., Gulyushin V.L., Raspaev Yu.A., Lagutenko O.I., Shchesnyak A.S. Adaptive Antenna Arrays. Part 1. St. Petersburg: ITMO University Publ.; 2016. 179 p. (in Russ.)

23. Simon D. Evolutionary Optimization Algorithms. John Wiley & Sons, Inc.; 2013. 784 p.


Review

For citations:


Andropov A., Kuzmin S. Radiation Pattern Synthesis Method of Antenna Arrays with an Arbitrary Arrangement of Radiating Elements. Proceedings of Telecommunication Universities. 2022;8(2):15-28. (In Russ.) https://doi.org/10.31854/1813-324X-2022-8-2-15-28

Views: 847


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)