Mobile Communication Networks for Video Data Transmission from UAV
https://doi.org/10.31854/1813-324X-2022-8-1-16-26
Abstract
The article describes the results of a flight experiment on the use of a public mobile communication network, conducted in St. Petersburg and its suburbs. The numerical values are given for the signal quality parameters: RSSI, RSRP, RSRQ, SNR and the average data transfer rate from the UAV and to the UAV. It is shown that interRAT handover significantly affects the urban area, which is associated with a high density of base stations. It is concluded that it is possible to transmit video traffic from a UAV for infrastructure monitoring with requirements for a data transfer rate of 1‒1.5 Mbps.
About the Authors
A. BaranovRussian Federation
St. Petersburg, 191104
A. Nikitina
Russian Federation
St. Petersburg, 193232
O. Simonina
Russian Federation
St. Petersburg, 193232
References
1. Muruganathan S.D., Lin X., Määttänen H.L., Sedin J., Zou Z., Hapsari W.A., et al. An overview of 3GPP release-15 study on enhanced LTE support for connected drones. arXiv preprint arXiv:1805.00826. 2018.
2. Ding X., Yin D., Zhou Y., Lai J., Wang Y. Joint communication quality assurance algorithm for UAVs flying over urban LTE networks. Proceedings of the 3rd International Conference on Computer and Communications, ICCC, Chengdu, China, 13‒16 December 2017. IEEE; 2017. p.490‒496. DOI:10.1109/CompComm.2017.8322595
3. Stanczak J., Kovacs I.Z., Koziolet D., Wigard J., Amorim R., Nguyen H. Mobility Challenges for Unmanned Aerial Vehicles Connected to Cellular LTE Networks. Proceedings of the 87th Vehicular Technology Conference, VTC Spring, 3‒6 June 2018, Porto, Portugal. IEEE; 2018. DOI:10.1109/VTCSpring.2018.8417736
4. Stornig A., Fakhreddine A., Hellwagner H., Popovski P., Bettstetter C. Video Quality and Latency for UAV Teleoperation over LTE: A Study with ns3. Proceedings of the 93rd Vehicular Technology Conference, VTC2021-Spring, 25‒28 April 2021, Helsinki, Finland. IEEE; 2021. DOI:10.1109/VTC2021-Spring51267.2021.9448676
5. Nihei K., Kai N., Maruyama Y., Yamashita T., Kanetomo D., Kitahara T., et al. Forest Fire Surveillance using Live Video Streaming from UAV via Multiple LTE Networks. Proceedings of the 19th Annual Consumer Communications & Networking Conference, CCNC, 8‒11 January 2022, Las Vegas, USA. IEEE; 2022. p.465‒468. DOI:10.1109/CCNC49033.2022.9700621
6. Lin X., Yajnanarayana V., Muruganathan S.D., Gao S., Asplund H., Maattanen H.L. The Sky Is Not the Limit: LTE for Unmanned Aerial Vehicles. IEEE Communications Magazine. 2018;56(4):204‒210. DOI:10.1109/MCOM.2018.1700643
7. Gharib M., Nandadapu S., Afghah F. An Exhaustive Study of Using Commercial LTE Network for UAV Communication in Rural Areas. Proceedings of the International Conference on Communications Workshops, ICC Workshops, 14‒23 June 2021, Montreal, Canada. IEEE; 2021. p.1‒6. DOI:10.1109/ICCWorkshops50388.2021.9473547
8. Naveed M., Qazi S., Khawaja B.A. UAV-based Life-Saving Solution For Police To Maintain Social-Distancing During Covid19 Pandemic Using 4G-LTE Technology. Proceedings of the International Conference on Communication Technologies, ComTech, 21‒22 September 2021, Rawalpindi, Pakistan. IEEE; 2021. PP.28‒32. DOI:10.1109/ComTech52583.2021.9616854
9. Nguyen H.C., Amorim R., Wigard J., Kovacs I.Z., Mogensen P. Using LTE Networks for UAV Command and Control Link: A Rural-Area Coverage Analysis. Proceedings of the 86th Vehicular Technology Conference, VTC-Fall, 24‒27 September 2017, Toronto, Canada. IEEE; 2017. p.1‒6. DOI:10.1109/VTCFall.2017.8287894
10. Jeong H. H., Lee J., Park S. A Study on Data Acquisition in the Invisible Zone of UAV through LTE Remote Control. Korean Journal of Remote Sensing. 2019;35(6_1):987‒997. DOI:10.7780/kjrs.2019.35.6.1.9
11. Agamalyan V. A. Experience in Developing UAVs for Monitoring Technological Facilities and Ensuring Emergency Rescue Operations. Proceedings of the V th Military Scientific Conference, July 29–30, 2020, Anapa, Russia on Robotics of the Armed Forces of the Russian Federation. Anapa: Federal State Autonomous Institution "Military Innovative Technopolis "ERA"; 2020. p.228‒239. (in Russ.)
12. Belonogov A.S., Shorokhov N.S. Monitoring of the State of Railway Infrastructure Objects Based on FUSN Technology. Infokommunikacionnye tehnologii. 2021;19(1):40‒46. DOI:10.18469/ikt.2021.19.1.05 (in Russ.)
13. Korepanov K.E., Shibanov R.E., Kaysina I.A., Abilov A.V., Lamri M.A. Analysis of Radio Signal Propagation Models for Simulating Wireless Networks in the NS-3 Environment. Proceedings of the XXXIst Republican Exhibition-Session of Student Innovation Projects and XLth Scientific and Technical Youth Conference of Izhevsk Elektromekhanicheskiy Zavod: Innovation Exhibition-2021 (Spring Session), 23 March–22 April 2021, Izhevsk, Russia. Izhevsk: Kalashnikov Izhevsk State Technical University Publ.; 2021. p.66‒72. (in Russ.)
14. Nikitina A., Mitryashkina D. Analysis of the Requirements to Channels of Existing Mobile Communication Networks for Data Transmitting from an Unmanned Aerial Vehicle. Proceedings of the 45th International Conference "Mobile Business: Prospects for the Development and Implementation of Radio Communication Systems in Russia and Abroad", 02–03 July 2020, Moscow, Russia. Moscow: National Institute of Radio and Infocommunication Technologies Publ.; 2020. p.9‒11. (in Russ.)
15. The Program and Methods for Monitoring the Quality Parameters of Mobile Radiotelephone Services, Including MVNO. Available from: https://rkn.gov.ru/docs/Programma_i_metodiki_kontrolja_kachestva_sotovoj_svjazi1.pdf [Accessed 11/03/22]
16. Galkin B., Kibilda J., DaSilva L.A. Backhaul for Low-Altitude UAVs in Urban Environments. Proceedings of the International Conference on Communications, ICC, 20‒24 May 2018, Kansas City, USA. IEEE; 2018. DOI:10.1109/ICC.2018.8422376
Review
For citations:
Baranov A., Nikitina A., Simonina O. Mobile Communication Networks for Video Data Transmission from UAV. Proceedings of Telecommunication Universities. 2022;8(1):16-26. (In Russ.) https://doi.org/10.31854/1813-324X-2022-8-1-16-26