ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОТКЛОНЕНИЯ ГЕОМЕТРИИ ПРОМЫШЛЕННЫХ ОБРАЗЦОВ МАЛОМОДОВЫХ ОПТИЧЕСКИХ ВОЛОКОНОТ ОПТИМАЛЬНОЙ ФОРМЫ НА ДЕГРАДАЦИЮ СПЕКТРАЛЬНОЙ ХАРАКТЕРИСТИКИ ДИФФЕРЕНЦИАЛЬНОЙ МОДОВОЙ ЗАДЕРЖКИ
Аннотация
Об авторах
В. А. АндреевРоссия
А. В. Бурдин
Россия
В. А. Бурдин
Россия
Список литературы
1. Kubota H., Morioka T. Few-mode optical fiber for mode-division multiplexing // Optical Fiber Technology. 2011. Vol. 17. Iss. 5. PР. 491-494.
2. Richardson D.J., Fini J.M., Nelson L.E. Space-division multiplexing in optical fibers // Nature Photonics. 2013. Vol. 7. PР. 354-362.
3. Morioka T. Recent progress in space-division multiplexed transmission technologies // Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC). 2013.
4. Kasahara M., Saitoh K., Sakamoto T., Hanzawa N., Matsui T., Tsujikawa K., Yamamoto F., Koshiba M. Design of Few-Mode Fibers for Mode-Division Multiplexing Transmission // IEEE Photonics Journal. 2013. Vol. 5. Iss. 6.
5. Ferreira F.M., Fonseca D., da Silva H.J.A. Design of Few-Mode Fibers With M-modes and Low Differential Mode Delay // Journal of Lightwave Technology. 2014. Vol. 32. Iss. 3. PР. 353-360.
6. Mizuno T., Takara H., Sano A., Miyamoto Yu. Dense Space-Division Multiplexed Transmission Systems Using Multi-Core and Multi- Mode Fiber // Journal of Lightwave Technologies. 2016. Vol. 34. Iss. 2. PР. 582-592.
7. Sillard P., Molin D., Bigot-Astruc M., Amezcua-Correa A., de Jongh K., Achten F. 50 m Multimode Fibers for Mode Division Multiplexing // Journal of Lightwave Technologies. 2016. Vol. 34. Iss. 8. PР. 1672-1677.
8. Андреев В.А., Бурдин В.А., Бурдин А.В., Дашков М.В. Маломодовые оптические волокна с сильно увеличенным диаметром сердцевины для транспортных сетей связи нового поколения // Фотон-Экспресс. 2015. № 6 (126). С. 245-246.
9. Andreev V.A., Burdin V.A., Bourdine A.V., Dashkov M.V., Volkov K.A. Research of potentiality of nonlinear effects mitigation by considerable increasing of optical fiber core diameter // Proceedings of SPIE. Optical Technologies for Telecommunications. 2015. Vol. 9533.
10. Bottacchi S. Multi-Gigabit transmission over multimode optical fibre. Theory and design methods for 10GbE systems. West Sussex: John Wiley & Sons Ltd. 2006.
11. Андреев В.А., Бурдин А.В., Бурдин В.А., Дмитриев Е.В., Евтушенко А.С., Севрук Н.Л., Халиков Р.Х. Моделирование градиентного профиля показателя преломления кварцевых оптических волокон с диаметром сердцевины 42 мкм и уменьшенной дифференциальной модовой задержкой // Инфокоммуникационные технологии. 2016. № 3. С. 235-246.
12. Andreev V.A., Bourdine A.V., Burdin V.A., Evtushenko A.S., Khalikov R.H. Design of low DMD few-mode optical fibers with extremely enlarged core diameter providing nonlinearity suppression for operating over “C”-band central region // Proceedings of SPIE. Optical Technologies for Telecommunications. 2017. Vol. 10342.
13. Бурдин А.В., Яблочкин К.А. Исследование дефектов профиля показателя преломления многомодовых оптических волокон кабелей связи // Инфокоммуникационные технологии. 2010. № 2. С. 22-27.
14. Андреев В.А., Бурдин А.В., Бурдин В.А. Метод расчета параметров схемы прецизионного пространственного позиционирования каналов системы MDM на торце сердцевины волоконного световода линии передачи // Труды учебных заведений связи. 2017. Т. 3. № 3. С. 5-11.
15. Снайдер А., Лав Дж. Теория оптических волноводов. М.: Радио и связь, 1987. 656 с.
16. Sharma A., Hosain S.I., Ghatak A.K. The fundamental mode of graded-index fibres: simple and accurate variational methods // Optical and Quantum Electronics. 1982. Vol. 14. Iss. 1. PР. 7-15.
17. Tewari R., Hosain S.I., Thyagarajan K. Scalar variational analysis of single mode fibers with Gaussian and smoothed-out profiles // Optics Communications. 1983. Vol. 48. Iss. 3. PР. 176-180.
18. Oksanen M.I., Lindell I.V. Variational analysis of anisotropic graded-index optical fibers // Journal of Lightwave Technology. 1989. Vol. 7. Iss. 1. PР. 87-91.
19. Ankiewicz A., Peng G.-D. Generalized Gaussian approximation for single-mode fibers // Journal of Lightwave Technology. 1992. Vol. 10. Iss. 1. PР. 22-27.
20. Holmes M.J., Spirit D.M., Payne F.P. New Gaussian-based approximation for modeling non-linear effects in optical fibers // Journal of Lightwave Technology. 1994. Vol. 12. Iss. 2. PР. 193-201.
21. Wu M.-Sh., Lee M.-H., Tsai W.-H. Variational analysis of single-mode graded-core W-fibers // Journal of Lightwave Technology. 1996. Vol. 14. Iss. 1. PР. 121-125.
22. Meher H., Hosain S.I. Variational Approximations for Single-mode Graded-index Fibers: Some Interesting Applications // Journal of Optical Communications. 2003. Vol. 24. Iss. 1. РP. 25-30.
23. Adams M.J. An Introduction to Optical Waveguides. New York: John Wiley and Sons, 1981.
24. Бурдин В.А. Методы определения коэффициентов формулы Селлмейера в задачах анализа дисперсионных характеристик кварцевых оптических волокон // Инфокоммуникационные Технологии. 2006. Т. 4. № 2. С. 30-34.
Рецензия
Для цитирования:
Андреев В.А., Бурдин А.В., Бурдин В.А. ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОТКЛОНЕНИЯ ГЕОМЕТРИИ ПРОМЫШЛЕННЫХ ОБРАЗЦОВ МАЛОМОДОВЫХ ОПТИЧЕСКИХ ВОЛОКОНОТ ОПТИМАЛЬНОЙ ФОРМЫ НА ДЕГРАДАЦИЮ СПЕКТРАЛЬНОЙ ХАРАКТЕРИСТИКИ ДИФФЕРЕНЦИАЛЬНОЙ МОДОВОЙ ЗАДЕРЖКИ. Труды учебных заведений связи. 2018;4(2):18-25.
For citation:
Andreev V..., Bourdine A..., Burdin V... RESEARCH OF REAL FEW-MODE OPTICAL FIBER GEOMETRY DEVIATION FROM THE OPTIMAL FORM INFLUENCE ON DIFFERENTIAL MODE DELAY SPECTRAL CHARACTERISTICS DEGRADATION. Proceedings of Telecommunication Universities. 2018;4(2):18-25. (In Russ.)