Quasi-Single-Mode Fibers with Increased Core Size Based on Non-Hexagonal Type Microstructures
https://doi.org/10.31854/1813-324x-2017-3-3-37-42
Abstract
The capabilities of silica-based microstructures with a large (40 μm in diameter) core and a nonhexagonal (circular) distribution of voids in the cladding for enhancement of the fundamental (LP01) mode confinement under bent condition are analyzed numerically. It has been determined that the criterion for obtaining a single-mode propagation in such optical elements is a high level of attenuation for the polarization component HE21 of the higher-order mode LP11.
About the Authors
Y. GatchinRussian Federation
V. Demidov
Russian Federation
K. Dukelskii
Russian Federation
E. Ter-Nersesyants
Russian Federation
References
1. Birks T.A., Knight J.C., Russell P.St.J. Endlessly Single-Mode Photonic Crystal Fiber // Opt. Lett. 1997. Vol. 22. No. 13. PP. 961–963.
2. Knight J.C., Birks T.A., Russell P.St.J., de Sandro J.P. Properties of Photonic Crystal Fiber and the Effective Index Model // J. Opt. Soc. Am. A. 1998. Vol. 15. No. 3. PP. 748–752.
3. Mortensen N.A., Nielsen M.D., Folkenberg J.R., Petersson A., Simonsen H.R. Improved Large-Mode-Area Endlessly Single-Mode Photonic Crystal Fibers // Opt. Lett. 2003. Vol. 28. No. 6. PP. 393–395.
4. Mortensen N.A., Folkenberg J.R. Low-Loss Criterion and Effective Area Considerations for Photonic Crystal Fibres // J. Opt. A: Pure Appl. Opt. 2003. Vol. 5. No. 3. PP. 163–167.
5. Nielsen M.D., Mortensen N.A., Albertsen M., Folkenberg J.R., Bjarklev A., Bonacinni D. Predicting Macrobending Loss for Large-Mode Area Photonic Crystal Fibers // Opt. Express. 2004. Vol. 12. No. 8. PP. 1775–1779.
6. Nielsen M.D., Folkenberg J.R., Mortensen N.A. Single-Mode Photonic Crystal Fiber with an Effective Area of 600 μm2 and Low Bending Loss // Electron. Lett. 2003. Vol. 39. No. 25. PP. 1802–1803.
7. Minkovich V.P., Kir'yanov A.V., Sotsky A.B., Sotskaya L.I. Large-Mode-Area Holey Fibers with a Few Air Channels in Cladding: Modeling And Experimental Investigation of the Modal Properties // J. Opt. Soc. Am. B. 2004. Vol. 21. No. 6. PP. 1161–1169.
8. Демидов В.В., Дукельский К.В., Тер-Нерсесянц Е.В., Шевандин В.С. Исследование одномодового режима работы микроструктурированных световодов с каналами вытекания излучения // Оптический журнал. 2013. Т. 80. № 5. С. 65–70.
9. Гатчин Ю.А., Дукельский К.В., Бондаренко И.Б., Садыков А.А., Демидов В.В., Тер-Нерсесянц Е.В. Оптические потери при изгибе одномодового микроструктурированного световода с большой сердцевиной // Научно-технический вестник информационных технологий, механики и оптики. 2015. Т. 15. № 2. С. 246–252.
10. Demidov V.V., Dukelskii K.V., Shevandin V.S. Novel Bend-Resistant Design of Single-Mode Microstructured Fibers // The European Conference on Lasers and Electro-Optics. 2011. Vol. CE4. PP. CE4_5.
11. Демидов В.В., Дукельский К.В., Тер-Нерсесянц Е.В., Шевандин В.С. Микроструктурированные одномодовые световоды на основе явления дифференциального модового затухания // Оптический журнал. 2012. Т. 79. № 1. С. 52–57.
12. Demidov V., Dukel'skii K., Shevandin V. Design and Characterization of Single-Mode Microstructured Fibers with Improved Bend Performance // Selected Topics on Optical Fiber Technology. 2012. PP. 447–472.
13. Demidov V.V., Dukel'skii K.V., Pasishnik A.S., Shevandin V.S. Large-Core Photonic Crystal Fibers: Efficient Cladding Designs for Strong Single-Mode Propagation with Low Optical Losses // Workshop on Specialty Optical Fibers and their Applications. 2013. Vol. F2. P. F2.18.
14. Demidov V., Ter-Nersesyants E. New Possibilities of Higher-Order Mode Filtering in Large-Mode-Area Photonic Crystal Fibers // Proc. SPIE. 2014. Vol. 9128. P. 91280S.
15. www.comsol.com.
16. Saitoh K., Koshiba M. Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers // IEEE J. Quant. Electron. 2002. Vol. 38. No. 7. PP. 927–933.
17. Агравал Г. Нелинейная волоконная оптика: Пер. с англ. М.: Мир. 1996. 323 с.
18. Olszewski J., Szpulak M., Urbanczyk W. Effect of Coupling Between Fundamental and Cladding Modes on Bending Losses in Photonic Crystal Fibers // Opt. Express. 2005. Vol. 13. No. 16. PP. 6015–6022.
19. Guobin R., Zhi W., Shuqin L., Shuisheng J. Mode Classification and Degeneracy in Photonic Crystal Fibers // Opt. Express. 2003. Vol. 11. No. 11. PP. 1310–1321.
20. Kuhlmey B.T., McPhedran R.C., de Sterke C.M. Modal Cutoff in Microstructured Optical Fibers // Opt. Lett. 2002. Vol. 27. No. 19. PP. 1684–1686.
21. Russell P.St.J. Photonic Crystal Fibers // Science. 2003. Vol. 299. No. 5605. PP. 358–362.
22. Russell P.St.J. Photonic-Crystal Fibers // J. Lightwave Technol. 2006. Vol. 24. No. 12. PP. 4729–4749.
23. Coscelli E., Poli F., Alkeskjold T.T., Passaro D., Cucinotta A., Leick L., Broeng J., Selleri S. Single-Mode Analysis of Yb-Doped Double-Cladding Distributed Spectral Filtering Photonic Crystal Fibers // Opt. Express. 2010. Vol. 18. No. 26. PP. 27197–27204.
24. Schermer R.T., Cole J.H. Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment // IEEE J. Quant. Electron. 2007. Vol. 43. No. 10. PP. 899–909.
25. Fini J.M. Bend-Resistant Design of Conventional and Microstructure Fibers with Very Large Mode Area // Opt. Express. 2006. Vol. 14. No. 1. PP. 69–81.
26. Iizawa K., Varshney S.K., Tsuchida Y., Saitoh K., Koshiba M. Bend-Insensitive Lasing Characteristics of Single-Mode, Large-Mode-Area Ytterbium-Doped Photonic Crystal Fiber // Opt. Express. 2008. Vol. 16. No. 2. PP. 579–591.
Review
For citations:
Gatchin Y., Demidov V., Dukelskii K., Ter-Nersesyants E. Quasi-Single-Mode Fibers with Increased Core Size Based on Non-Hexagonal Type Microstructures. Proceedings of Telecommunication Universities. 2017;3(3):37-42. (In Russ.) https://doi.org/10.31854/1813-324x-2017-3-3-37-42