Secure Information Transfer Using Two Keyless Cryptography Methods
https://doi.org/10.31854/1813-324X-2021-7-4-119-127
Abstract
In the current paper, some methods of information security protocols based on physical layer security are considered. It is proved that well known Shamir’s protocol can be applied to RSA cryptosystem but not to Rabin, Mac-Ellice and trellis based cryptosystems.
The main stream of this paper is a description of key sharing protocol on constant public and noiseless channels (like Internet). It is shown that it is able to provide a high reliability and control of security in terms of Shannon’s information providing nothing-additional requirements to communication channels and without any cryptographic assumptions.
About the Author
A. GerasimovichRussian Federation
St. Petersburg, 193232, Russian Federation
References
1. Korzhik V.I., Yakovlev V.A. Fundamentals of Cryptography. St. Petersburg: Intermediia Publ.; 2016. 312 p. (in Russ.)
2. Diffie W., Hellman M. New directions in cryptography. IEEE Transactions on Information Theory. 1976;22(6):644‒654. DOI:10.1109/TIT.1976.1055638
3. Dyakonov M.I. Is Fault-Tolerant Quantum Computation Really Possible? In Luryi S., Xu J., Zaslavsky A. Future Trends in Microelectronics. John Wiley & Sons; 2007. p.4‒18.
4. Bennett C.H., Bessette F., Brassard G., Salvail L., Smolin J. Experimental Quantum Cryptography. Journal of Cryptology. 1992;5:3‒28
5. Mukherjee A., Fakoorian S.A.A., Huang J., Swindlehurst A.L. Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey. IEEE Communications Surveys & Tutorials. 2014;16(3):1550‒1573. DOI:10.1109/SURV.2014.012314.00178
6. Schneier B. Applied Cryptography. Montreal: JW Publ. Inc.; 1994
7. Menezes A.J., van Oorschot P.C., Vanstone S.A. Handbook of Applied Cryptography. Boca Raton: CRC Press; 1997. DOI:10.1201/9780429466335
8. Shor P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 20–22 November 1994, Santa Fe, USA. IEEE Computer Society Press; 1994. p.124–134.
9. Goldreich O., Goldwasser S., Halevi S. Public–key cryptography from lattice reduction problems. Proceedings of the 17th Annual International Cryptology Conference, 17–21 August 1997, Santa Barbara, USA. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1997. vol.1291. p.112‒131. DOI:10.1007/BFb0052231
10. Alpern B., Schneider F.B. Key exchange using ‘keyless cryptography’. Information Processing Letters. 1983;16(2):79‒81. DOI:10.1016/0020-0190(83)90029-7
11. Maurer U.M. Secrete key agreement by public discussion from common information. IEEE Transactions on Information Theory. 1993;39(3):733‒742. DOI:10.1109/18.256484
12. Yakovlev V., Korzhik V., Morales-Luna G. Key Distribution Protocols Based on Noisy Channels in Presence of an Active Adversary: Conventional and New Versions with Parameter Optimization. IEEE Transactions on Information Theory. 2008;54(6):2535‒2549. DOI:10.1109/TIT.2008.921689
13. Korzhik V., Starostin V., Kabardov M., Gerasimovich A., Yakovlev V., Zhuvikin A. Protocol of key distribution over public noiseless channels executing without cryptographic assumptions. International Journal of Computer Science and Application. 2020;17(1):1‒14.
14. Korzhik V., Starostin V., Kabardov M., Gerasimovich A., Yakovlev V., Zhuvikin A. Optimization of the Key Sharing Protocol for Noiseless Public Channels without the Use of Cryptographic Assumptions. Proceedings of the 44th International Convention on Information, Communication and Electronic Technology, MIPRO, 27 September‒1 October 2021, Opatija, Croatia. IEEE; 2021. p.1202‒1207. DOI:10.23919/MIPRO52101.2021.9596703
15. Korzhik V.I., Starostin V.S., Kabardov M.M., Gerasimovich A.M., Yakovlev V.A., Zhuvikin A.G. Information theoretically secure key sharing protocol executing with constant noiseless public channels. Matematicheskie Voprosy Kriptografii. 2021;12(3):125–141. DOI:10.4213/mvk378
16. MacKay D.J.C., Neal R.M. Near Shannon Limit Performance of Low Density Parity Check Codes. Electronics Letters. 1997;33(18):457–458.
17. Fossorier M. P.C., Mihaljevic M., Imai H. Reduced complexity iterative decoding of low density parity check codes based on belief propagation. IEEE Transactions on Communications. 1999;47(5):673‒680. DOI:10.1109/26.768759
18. Korjik V., Morales-Luna G., Balakirsky V.B. Privacy Amplfication Theorem for Noisy Main Channel. Proceedings of the 4th International Conference on Information Security, ISC 2001, 1–3 October 2001, Malaga, Spain. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 2001. vol.2200. p.18‒26. DOI:10.1007/3-540-45439-X_2
19. Podorozhnyi I. V. Overview of Hardware Random Number Generators. Molodoy uchenyi. 2015;1(105). Available from: http://moluch.ru/archive/105/24688 [Accessed 24th June 2020] (In Rus.)
20. Needham R.M., Schroeder M.D. Using encryption for authentication in large network of computers. Communications of the ACM. 1978;21(12):993‒999. DOI:10.1145/359657.359659
21. Jin R., Shi L., Zeng K., Pande A., Mohapatra P. MagPairing: Pairing Smartphones in Close Proximity Using Magnetometer // IEEE Transactions on Information Forensics and Security. 2016. Vol. 11. Iss. 6. PP. 1306‒1320. DOI:10.1109/TIFS.2015.2505626
Review
For citations:
Gerasimovich A. Secure Information Transfer Using Two Keyless Cryptography Methods. Proceedings of Telecommunication Universities. 2021;7(4):119-127. (In Russ.) https://doi.org/10.31854/1813-324X-2021-7-4-119-127