Preview

Proceedings of Telecommunication Universities

Advanced search

Research of Fiber Optic Connector Ferrule End-Face Degradation Influence on Optical Pulse Distortion during Propagation over Indoor Multi-Gigabit Optical Network Link with Crypto-Fibers

https://doi.org/10.31854/1813-324X-2021-7-4-18-30

Abstract

This article presents results of approbation of developed model of piece-wise regular fiber optic link, operating in a few-mode regime, with series-connected couple of special multimode optical crypto-fibers “encryptor-decoder”. Unlike the previously developed solution, the model was modified with an ability to take into account influence of fiber optic connector end-face contamination on laser-excited optical signal launching conditions. We present comparison results of computed optical pulse response envelops, distorted during propagation over 10GBase-LX network fiber optic links, containing optical crypto-fibers, depending on various conditions of transceiver laser source connector ferrule end-face contamination.

About the Authors

A. Bourdine
Research and Production Association S.I. Vavilov State Optical Institute; Povolzhskiy State University of Telecommunications and Informatics
Russian Federation

St. Petersburg, 192171, Russian Federation

Samara, 443010, Russian Federation



S. Pashin
Povolzhskiy State University of Telecommunications and Informatics
Russian Federation

Samara, 443010, Russian Federation



References

1. Bourdine A.V., Gubareva O.Yu., Pugin V.V., Pashin S.S. Secure Data Transmission over Specialized Fiber-Optic Link. Infokommunikacionnye tehnologii. 2017;15(4):337‒349. (in Russ.) DOI:10.18469/ikt.2017.15.4.04

2. Bourdine A.V., Evtushenko A.S., Gubareva O.Yu., Minaeva A.Yu., Pashin S.S., Praporshchikov D.E. Secure data transmission channel protected by special fiber optic link based on optical crypto-fibers. Proceedings of the XVth International Scientific and Technical Conference on Optical Technologies in Telecommunications, 20‒23 November 2017, Kazan, Russian Federation. SPIE; 2018. vol.10774. DOI:10.1117/12.2318579

3. Semenov A.B. Fiber-Optic Subsystems of Modern Structured Cabling Systems. Moscow: Academy IT Publ.; DMK Press Publ.; 2007. 632 p. (in Russ.)

4. Bottacchi S. Multi-Gigabit Transmission over Multimode Optical Fibre: Theory and Design Methods for 10GbE Systems. West Sussex: John Wiley & Sons Ltd.; 2006. 654 p.

5. Smirnov I.G. The Structured Cabling System – Design Work, Jointing, Certification. Moscow: AESP Press Pub.; 2007. 348 p. (in Russ.)

6. Semenov A.B., Strizhakov S.K., Sunchelej I.R. The Structured Cabling System. Moscow: DMK Press Publ.; 2002. 640 p. (in Russ.)

7. Bourdine A. Modeling and Simulation of Piecewise Regular Multimode Fiber Links Operating in a Few-Mode Regime. Advances in Optical Technologies. 2013;2013. DOI:10.1155/2013/469389

8. Agrawal G. Nonlinear Fiber Optics. Moscow: Mir Publ.; 1996. 323 p. (in Russ.)

9. Snyder A., Love J. Theory of Optical Waveguides. Translated from English. Moscow: Radio i sviaz Publ.; 1987. 656 p. (in Russ.)

10. Srapionov V.A. Mode Coupling at Optical Fiber Junctions with Parameter Scatter. Elektrosviaz. 1985;10:10–12. (in Russ.)

11. Meunier J.P., Wang Z.H. Evaluation of Tilt or Offset Loss between Two Single-mode Graded-index Optical Wave-guides. Proceedings of the International China Fibercom, 15‒18 May 1994, Shanghai, China. 1994. p.356–362.

12. Bourdine A.V., Delmukhametov O.R. Calculation of the Transmission Parameters Higher-Order Guided Modes Based on Combination of the Modified Gauss Approximation and the Finite Element Method. Telekommunikatsii (Telecommunica-tions). 2010;9:33–40. (in Russ.)

13. Adams M. Introduction to the Theory of Optical Waveguides. Translated from English. Moscow: Mir Publ.; 1984. 512 p. (in Russ.)

14. Yabre G. Comprehensive Theory of Dispersion in Graded-Index Optical Fibers. IEEE Journal of Lightwave Technolo-gy. 2000;18(2):166–177.

15. Bourdine A.V. Mode coupling at the splice of diverse optical fibers. Proceedings of the Optical Technologies for Tele-communications, 17‒18 November 2012, Ufa, Russian Federation. SPIE; 2012. vol.8787. DOI:10.1117/12.2018553

16. Bourdine A., Pashin S. Method for Estimation of Reflection on Fiber Optic Connection Based on Analysis of Images of End Surfaces of Ferrule Connectors. Proc. of Telecom. Universities. 2020;6(4):16‒27. (in Russ.) DOI:10.31854/1813-324X-2020-6-4-16-27

17. Bourdine A.V., Pashin S.S., Zaitseva E.S., Vasilets A.S., Antonov S.A. Fast and simple method for estimation of the in-sertion loss at the connection of singlemode optical fibers with contaminated ferrule end faces. Proceedings of the XVIIth International Scientific and Technical Conference on Optical Technologies for Telecommunications, 19‒21 November 2019, Ka-zan, Russian Federation. SPIE; 2020. vol.11516. DOI:10.1117/12.2566456

18. Bourdine A.V., Bylina М.V., Pashin S.S., Praporshchikov D.E., Zaitseva E.S. Method for estimation of reflection on fi-ber optic connection based on ferrule end-face photo-image analysis. Proceedings of the VIIIth International Scientific and Technical Conference on Optical Technologies for Communications, 17‒20 November 2020, Samara, Russian Federation. SPIE; 2021. vol.11793. DOI:10.1117/12.2597068

19. Westover FBP P-5000 FiberCheck2. User guide. Translated from English. 2008. (in Russ.)

20. Bourdine A.V., Pashin S.S, Giniatulina A.M., Vasilets A.A., Antonov S.A. Development and approbation of procedure for automated localization of fiber optic connector contaminated ferrule end face image artifacts. Proceedings of the XVIth International Scientific and Technical Conference on Optical Technologies in Telecommunications, 20‒22 November 2018, Ufa, Russian Federation. SPIE; 2019. vol.11146. DOI:10.1117/12.2527547

21. Lyytikainen K.J. Control of complex structural geometry in optical fibre drawing. D.Sc Thesis. Sydney: School of Phys-ics and Optical Fibre Technology Centre University of Sydney; 2004. 273 p.

22. Demidov V.V., Ter-Nersesyants E.V., Bourdine A.V., Burdin V.A., Minaeva A.Yu., Matrosova A.S., et al. Methods and technique of manufacturing silica graded-index fibers with a large central defect of the refractive index profile for fiber-optic sensors based on few-mode effects. Proceedings of the XIV International Scientific and Technical Conference on Optical Technologies in Telecommunications, 22‒24 November 2016, Samara, Russian Federation. SPIE; 2017. vol.10342. DOI:10.1117/ 12.2270784

23. Standard 61300-3-35. Fibre optic interconnecting devices and passive components: Basic test and measurement proce-dures. Part 3-35. Examinations and measurements. Visual inspection of fibre optic connectors and fibre-stub transceivers. Iss. 1.0. 2009. 42 p.


Review

For citations:


Bourdine A., Pashin S. Research of Fiber Optic Connector Ferrule End-Face Degradation Influence on Optical Pulse Distortion during Propagation over Indoor Multi-Gigabit Optical Network Link with Crypto-Fibers. Proceedings of Telecommunication Universities. 2021;7(4):18-30. (In Russ.) https://doi.org/10.31854/1813-324X-2021-7-4-18-30

Views: 685


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)