Preview

Proceedings of Telecommunication Universities

Advanced search

Digital Signature Scheme with Hidden Group Possessing Two-Dimensional Cyclicity

https://doi.org/10.31854/1813-324X-2021-7-2-85-93

Abstract

A method is proposed for constructing digital signature schemes based on the hidden discrete logarithm problem, which meet ageneral criterion of post-quantum resistance. The method provides a relatively small size of the public key and signature. Based on the method, a practical digital signature scheme has been developed, in which the exponentiation operation in a hidden group with two-dimensional cyclicity is the basic cryptographic primitive. The algebraic support of a cryptoscheme is a four-dimensional finite non-commutative algebra with associative multiplication operation. By specifying algebra using abasis vector multiplication table with half of empty cells, the performance of signature generation and authentication procedures is improved. A public key is a triple of fourdimensional vectors calculated as images of elements of a hidden group which are mapped using two types of masking operations: 1) mutually commutative with the exponentiation operation and 2) not having this property.

About the Authors

D. N. Moldovyan
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Russian Federation

St. Petersburg, 199178



R. Sh. Fahrutdinov
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Russian Federation

St. Petersburg, 199178



A. Yu. Mirin
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Russian Federation

St. Petersburg, 199178



A. A. Kostina
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Russian Federation

St. Petersburg, 199178



References

1. Ding J., Steinwandt R. Post-Quantum Cryptography. Revised Selected Papers of the 10th International Conference, PQCrypto 2019, Chongqing, China, 8–10 May 2019. Lecture Notes in Computer Science. Security and Cryptology. Springer; 2019. vol.11505. 418 p.

2. Announcing Request for Nominations for Public-Key Post-Quantum Cryptographic Algorithms. Federal Register. 2016;81(244). Available from: https://www.gpo.gov/fdsys/pkg/FR-2016-12-20/pdf/2016-30615.pdf [Accessed 24th May 2021]

3. Moldovyan A.A., Moldovyan D.N. Post-Quantum Digital Signature Protocols Based on the Hidden Discrete Logarithm Problem. Information Security Questions (Voprosy zaŝity informacii). 2019;2(125):23-32.

4. Moldovyan N.A., Moldovyan A.A. Finite Non-commutative Associative Algebras as carriers of Hidden Discrete Logarithm Problem. Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software. 2019;12(1):66–81. DOI:10.14529/mmp190106

5. Молдовян Н.А., Молдовян Д.Н. Постквантовая схема ЭЦП на основе скрытой задачи дискретного логарифмирования в четырехмерной конечной алгебре // Вопросы защиты информации. 2019. № 2. С. 18-22.

6. Moldovyan A.A., Moldovyan N.A. Post-quantum signature algorithms based on the hidden discrete logarithm problem. Computer Science Journal of Moldova. 2018;26(3(78)):301‒313.

7. Shor P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on Quantum Computer. SIAM Review. 1999;41(2):303–332. DOI:10.1137/S0036144598347011

8. Ekert A., Jozsa R. Quantum computation and Shor’s factoring algorithm. Reviews of Modern Physics. 1996;68:733. DOI:10.1103/RevModPhys.68.733

9. Jozsa R. Quantum algorithms and the Fourier transform. Proceedings of the Royal Society A. Mathematical, Physical and Engineering Sciences. 1998;454(1969):323‒337. DOI:10.1098/rspa.1998.0163

10. Moldovyan N.A., Moldovyan A.A. Candidate for practical post-quantum signature scheme. Vestnik of St Petersburg University. Applied Mathematics. Computer Science. Control Processes. 2020;16(4):455–461. DOI:10.21638/11701/spbu10. 2020.410

11. Moldovyan N.A. Signature Schemes on Algebras, Satisfying Enhanced Criterion of Post-quantum Security. Buletinul Academiei de Stiinte a Republicii Moldova. Matematica. 2020;2(93):62‒67.

12. Moldovyan N.A. Fast signatures based on non-cyclic finite groups. Quasigroups and Related Systems. 2010;1(18):83‒94.

13. Moldovyan N.A., Moldovyanu P.A. New primitives for digital signature algorithms. Quasigroups and Related Systems. 2009;2(17):271‒282.

14. Fahrutdinov R.S., Mirin A. Yu., Moldovyan D.N., Kostina A.A. Public Key ‒ Agreement Schemes Based on the Hidden Discrete Logarithm Problem. Information Technologies (Informacionnye Tehnologii). 2020;26(10):577‒585. DOI:10.17587/it.26

15. Guryanov D.Yu., Moldovyan D.N., Moldovyan A.A. Post-Quantum Digital Signature Schemes: Setting a Hidden Group with Two-Dimensional Cyclicity. Informatizatsiia i sviaz. 2020;4:75‒82. DOI:10.34219/2078-8320-2020-11-4-75-82

16. Fast-Fourier Lattice-Based Compact Signatures over NTRU. Falcon. URL: https://falcon-sign.info [Accessed 24th May 2021]

17. Dilithium Home. CRYSTALS. Cryptographic Suite for Algebraic Lattices. URL: https://pq-crystals.org/dilithium/index. shtml [Accessed 24th May 2021]


Review

For citations:


Moldovyan D.N., Fahrutdinov R.Sh., Mirin A.Yu., Kostina A.A. Digital Signature Scheme with Hidden Group Possessing Two-Dimensional Cyclicity. Proceedings of Telecommunication Universities. 2021;7(2):85-93. (In Russ.) https://doi.org/10.31854/1813-324X-2021-7-2-85-93

Views: 648


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)