Preview

Proceedings of Telecommunication Universities

Advanced search

Positioning of Vehicles with the Fusion of Time of Arrival, Angle of Arrival and Inertial Measurements in the Extended Kalman Filter

https://doi.org/10.31854/1813-324X-2021-7-2-51-67

Abstract

This work is devoted to the study of models and methods for improving posi-tioning accuracy in ultradense V2X/5G radio access networks for vehicles during maneuvers by combining range and angle primary measurements with measure-ments of inertial navigation systems in the extended Kalman filter. Onboard platformless inertial navigation system is represented by three-axis accelerometer and gyroscope modules. Integration of primary inertial measurements of acceleration and angular velocity with primary radio measurements of range and angle is carried out by converting the inertial coordinate system of the accelerometer and gy-roscope into coordinate system of vehicle using quaternions. Secondary pro-cessing of inertial and radio measurements is carried out in the extended Kalman filter. The integration results show an increase in the accuracy of estimating the trajectory of a vehicle from several meters to one meter when turning at an inter-section.

About the Authors

G. A. Fokin
The Bonch-Bruevich State University of Telecommunication
Russian Federation

St. Petersburg, 193232



A. G. Vladyko
The Bonch-Bruevich State University of Telecommunication
Russian Federation

St. Petersburg, 193232



References

1. Fokin G.A. Technologies of Network Positioning. St. Petersburg: The Bonch-Bruevich State University of Telecommunications Publ.; 2020. 558 p. (in Russ.)

2. Fokin G.A., Koucheryavy A.Y. Network Positioning in 5G Ecosystem. Electrosvyaz. 2020;9:51–58. (in Russ.) DOI:10.34 832/ ELSV.2020.10.9.006

3. Kireev A., Fokin G. Positioning of Objects in LTE Networks by Measuring Signal Time of Arrival. Proc. of Telecom. Universities. 2016;2(1):68‒72. (in Russ.)

4. Kireev A., Fokin G. Radio Direction-Finding of LTE Emissions Using Mobile Spectrum Monitoring Station with Circular Antenna Array. Trudy NIIR. 2015;2:68‒71. (in Russ.)

5. Sivers M., Fokin G., Dmitriev P., Kireev A., Volgushev D., Al-Odhari A. Indoor Positioning in WiFi and NanoLOC Networks. Proceedings of the 16th International on Next Generation Wired/Wireless Networking, NEW2AN 2016, and 9th Conference on Conference on Internet of Things and Smart Spaces, ruSMART 2016, St. Petersburg, Russia, 26–28 September 2016. Lecture Notes in Computer Science. Cham: Springer; 2016. vol.9870. p.465–476. DOI:10.1007/978-3-319-46301-8_39

6. Sivers M., Fokin G., Dmitriev P., Kireev A., Volgushev D., Al-odhari A.H.A. Wi-Fi Based Indoor Positioning System Using Inertial Measurements. Proceedings of the 17th International Conference on International Conference on Next Generation Wired/Wireless Networking (NEW2AN 2017), 10th Conference on Conference on Internet of Things and Smart Spaces (ruSMART 2017), Third Workshop on International Workshop on Nano-scale Computing and Communications (NsCC 2017), 28–30 August 2017, St. Petersburg, Russia. Lecture Notes in Computer Science. Cham: Springer; 2017. vol.10531. p.734‒744. DOI:10.1007/9783-319-67380-6_69

7. Kireev A.V., Fokin G.A. Accuracy Evaluation of Local Positioning by Radiomap Building and Inertial Navigation Systems. Proc. of Telecom. Univercities. 2017;3(4):54–62. (in Russ.)

8. Dukhovnitskiy O.G., Ragilo M.A., Sivers M.A., Fokin G.A. Kalman Filtering for Positioning Applications. Electrosvyaz. 2016;1:78–81. (in Russ.)

9. Fokin G., Vladyko A. The Vehicles Positioning in Ultra-Dense 5G/V2X Radio Access Networks Using the Extended Kalman Filter. Proc. of Telecom. Universities. 2020;6(4):45‒59. (in Russ.) DOI:10.31854/1813-324X-2020-6-4-45-59

10. Kalman R.E. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering. 1960;82(1): 35–45. DOI:10.1115/1.3662552

11. Fomin V.N. Recurrent Estimation and Adaptive Filtering. Moscow: Nauka Publ.; 1984. (in Russ.)

12. Balakrishnan A.V. Kalman Filtration Theory. Moscow: Mir Publ.; 1988. (in Russ.)

13. Elyasberg P.E. Determination of Motion Based on Measurement Results. Moscow: Nauka Publ.; 1976. (in Russ.)

14. Brammer K., Ziffling G. Kalman-Bucy Filter. Deterministic Observation and Stochastic Filtering. Moscow: Nauka Publ.; (in Russ.)

15. Roytenberg Y.N. Automatic Control. Moscow: Nauka Publ.; 1992. (in Russ.)

16. Kuzovkov N.T., Salychev O.S. Inertial Navigation and Optimal Filtration. Moscow: Mashinostroenie Publ.; 1982. (in Russ.)

17. Andreev V.D. The Theory of Inertial Navigation. Corrected Systems. Moscow: Nauka Publ.; 1967. (in Russ.)

18. McClure K.L. The Theory of Inertial Navigation. Moscow: Nauka Publ.; 1964. (in Russ.)

19. Ishlinsky A.Y. Orientation, Gyroscopes and Inertial Navigation. Moscow: Nauka Publ.; 1976. (in Russ.)

20. Gorenstein N.A., Shulman I.A., Safaryan A.S. Inertial Navigation. Moscow: Sovetskoe radio Publ.; 1962. (in Russ.)

21. Donnell O. Inertial Navigation. Analysis and Design. Moscow: Nauka Publ.; 1969. (in Russ.)

22. Vasiliev P.V., Meleshko A.V., Pyatkov V.V. Accuracy Improvement of Correctable Inertial Navigation System. Journal of Instrument Engineering. 2014;57(12):15–21. (in Russ.)

23. Trefilov P.M. Comparative Analysis of Improving the Accuracy Characteristics of Inertial Navigation Systems. Proceedings of the XIIIth All-Russian Meeting on Control Problems, 17‒20 June 2019, Moscow, Russia. Moscow: V.A. Trapeznikov Institute of Control Sciences RAS Publ.; 2019. p.470‒474. (in Russ.) DOI:10.25728/vspu.2019.0470

24. Munguía R. A GPS-aided Inertial Navigation System in Direct Configuration. Journal of Applied Research and Technology. 2014;12(4):803‒814.

25. Lai Q., Yuan H., Wei D., Wang N., Li Z., Ji X. A Multi-Sensor Tight Fusion Method Designed for Vehicle Navigation. Sensors. 2020;20(9):2551. DOI:10.3390/s20092551

26. Zhao F., van Wachem B.G.M. A novel Quaternion integration approach for describing the behaviour of non-spherical particles. Acta Mechanica. 2013;224:3091–3109. DOI:10.1007/s00707-013-0914-2

27. Chen X., Song S., Xing J. A ToA/IMU indoor positioning system by extended Kalman filter, particle filter and MAP algorithms. Proceedings of the 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, PIMRC, 4‒8 September 2016, Valencia, Spain. IEEE; 2016. DOI:10.1109/PIMRC.2016.7794980

28. Chen Xc., Chu S., Li F., Li F., Chu G. Hybrid ToA and IMU indoor localization system by various algorithms. Journal of Central South University. 2019;26:2281–2294. DOI:10.1007/s11771-019-4173-9

29. Lategahn J., Müller M., Röhrig C. Extended Kalman filter for a low cost TDoA/IMU pedestrian localization system. Proceedings of the 11th Workshop on Positioning, Navigation and Communication, WPNC, 12‒13 March 2014, Dresden, Germany. IEEE; 2014. DOI:10.1109/WPNC.2014.6843307

30. MathWorks. Sensor Fusion and Tracking Toolbox™ Getting Started Guide. 2018. Available from: https://www.math works.com/help/releases/R2020b/pdf_doc/fusion/fusion_gs.pdf [Accessed 15th June 2021]

31. MathWorks. Estimate pose with nonholonomic constraints. 2021. URL: https://www.mathworks.com/help/fusion/ref/ insfilternonholonomic.html [Accessed 15th June 2021]

32. MathWorks. Orientation, Position, and Coordinate. 2021. URL: https://www.mathworks.com/help/fusion/gs/spatial- representation-coordinate-systems-and-conventions.html [Accessed 15th June 2021]

33. Andrle M.S., Crassidis J.L. Geometric Integration of Quaternions. Journal of Guidance Control and Dynamics. 2013;36(6):1762‒1767. DOI:10.2514/1.58558

34. Solà J. Quaternion kinematics for the error-state Kalman filter. Preprint arXiv:1711.02508. 2017.

35. Khanukaev Y.I. Introduction to Theoretical Mechanics. Moscow: Moscow Institute of Physics and Technology Publ.; 2017. (in Russ.)

36. Efremov A.P. Quaternions: Algebra, Geometry and Physical Theories. Hypercomplex Numbers in Geometry and Physics. 2004;1(1-1):111–127. (in Russ.)

37. Gordeev V.N. Quaternions and 3D Geometry. Kiev: Stal’ Publ.; 2012. (in Russ.)


Review

For citations:


Fokin G.A., Vladyko A.G. Positioning of Vehicles with the Fusion of Time of Arrival, Angle of Arrival and Inertial Measurements in the Extended Kalman Filter. Proceedings of Telecommunication Universities. 2021;7(2):51-67. (In Russ.) https://doi.org/10.31854/1813-324X-2021-7-2-51-67

Views: 631


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)