Preview

Труды учебных заведений связи

Расширенный поиск

Модель аудита защищенности объекта критической информационной инфраструктуры тестовыми информационно-техническими воздействиями

https://doi.org/10.31854/1813-324X-2021-7-1-94-104

Аннотация

В статье представлена модель аудита защищенности объекта критической информационной инфраструктуры тестовыми информационно-техническими воздействиями. Данная модель формализует процесс аудита объекта в виде многоуровневой топологической модели, отдельные уровни которой соответствуют: затратам ресурса на проведение воздействий, тестовым информационно-техническими воздействиям, уязвимостям, элементам объекта и уровням ущерба. Использование этой модели в практике аудита позволит обосновать наиболее эффективные воздействия по критерию «эффективность/стоимость», а также сформировать тестовые наборы, которые обеспечат рациональную полноту аудита объекта критической инфраструктуры. 

Об авторах

С. И. Макаренко
Санкт-Петербургский федеральный исследовательский центр Российской академии наук; Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)
Россия


Г. Е. Смирнов
Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина); ООО «Корпорация «Интел групп»
Россия


Список литературы

1. Макаренко С.И. Аудит информационной безопасности: основные этапы, концептуальные основы, классификация мероприятий // Системы управления, связи и безопасности. 2018. № 1. С. 1‒29. DOI:10.24411/24109916-2018-10101

2. Макаренко С.И. Аудит безопасности критической инфраструктуры специальными информационными воздействиями. Монография. СПб.: Наукоемкие технологии, 2018. 122 с.

3. Кашаев Т.Р. Алгоритмы активного аудита информационной системы на основе технологий искусственных иммунных систем. Автореф. дис. … канд. техн. наук. Уфа: УГАТУ, 2008. 19 с.

4. Марков А.С., Цирлов В.Л., Барабанов А.В. Методы оценки несоответствия средств защиты информации. М.: Радио и связь, 2012. 192 с.

5. Скабцов Н. Аудит безопасности информационных систем. СПб.: Питер, 2018. 272 с.

6. Penetration Testing. Procedures & Methodologies. EC-Council Press, 2011. 237 p.

7. Kennedy D., O’Gorman J., Kearns D., Aharoni M. Metasploit. The Penetration Tester’s Guide. San Francisco: No Starch Press, 2011. 299 p.

8. Makan K. Penetration Testing with the Bash shell. Birmingham: Pact Publishing, 2014. 133 p.

9. Cardwell K. Building Virtual Pentesting Labs for Advanced Penetration Testing. Birmingham: Pact Publishing, 2016. 518 p.

10. Макаренко С.И. Информационное оружие в технической сфере: терминология, классификация, примеры // Системы управления, связи и безопасности. 2016. № 3. С. 292‒376. DOI:10.24411/2410-9916-2016-10311

11. Макаренко С.И. Проблемы и перспективы применения кибернетического оружия в современной сетецентрической войне // Спецтехника и связь. 2011. № 3. С. 41‒47.

12. Макаренко С.И., Смирнов Г.Е. Анализ стандартов и методик тестирования на проникновение // Системы управления, связи и безопасности. 2020. № 4. С. 44‒72. DOI:10.24411/2410-9916-2020-10402

13. Климов С. М. Имитационные модели испытаний критически важных информационных объектов в условиях компьютерных атак // Известия ЮФУ. Технические науки. 2016. № 8(181). С. 27‒36.

14. Климов С.М., Сычёв М.П. Стендовый полигон учебно-тренировочных и испытательных средств в области обеспечения информационной безопасности // Информационное противодействие угрозам терроризма. 2015. № 24. С. 206‒213.

15. Петренко А.А., Петренко С.А. Киберучения: методические рекомендации ENISA // Вопросы кибербезопасности. 2015. № 3(11). С. 2‒14.

16. Бойко А.А., Дьякова А.В. Способ разработки тестовых удаленных информационно-технических воздействий на пространственно распределенные системы информационно-технических средств // Информационно-управляющие системы. 2014. № 3(70). С. 84‒92.

17. Бойко А.А., Дьякова А.В., Храмов В.Ю. Методический подход к разработке тестовых способов удаленного информационно-технического воздействия на пространственно распределенные системы информационнотехнических средств // Кибернетика и высокие технологии XXI века XV Международная научно-техническая конференция. Воронеж: НПФ «САКВОЕЕ», 2014. С. 386‒395.

18. Бойко А.А., Обущенко Е.Ю., Щеглов А.В. Особенности синтеза полного множества тестовых способов удаленного информационно-технического воздействия на пространственно распределенные системы информационно-технических средств // Вестник Воронежского государственного университета. Серия: Системный анализ и информационные технологии. 2017. № 2. С. 33‒45.

19. Баранова Е.К., Худышкин А.А. Особенности анализа безопасности информационных систем методом тестирования на проникновение // Моделирование и анализ безопасности и риска в сложных системах. Труды международной научной школы МАБР. 2015. С. 200‒205.

20. Баранова Е.К., Чернова М.В. Сравнительный анализ программного инструментария для анализа и оценки рисков информационной безопасности // Проблемы информационной безопасности. Компьютерные системы. 2014. № 4. С. 160‒168.

21. Бегаев А.Н., Бегаев С.Н., Федотов В.А. Тестирование на проникновение. СПб: Университет ИТМО, 2018. 45 с.

22. Богораз А.Г., Пескова О.Ю. Методика тестирования и оценки межсетевых экранов // Известия ЮФУ. Технические науки. 2013. № 12(149). С. 148‒156.

23. Дорофеев А. Тестирование на проникновение: демонстрация одной уязвимости или объективная оценка защищенности? // Защита информации. Инсайд. 2010. № 6(36). С. 72‒73.

24. Умницын М.Ю. Подход к полунатурному анализу защищенности информационной системы // Известия Волгоградского государственного технического университета. 2018. № 8(218). С. 112‒116.

25. Бородин М.К., Бородина П.Ю. Тестирование на проникновение средства защиты информации VGATE R2 // Региональная информатика и информационная безопасность. СПб., 2017. С. 264‒268.

26. Полтавцева М.А., Печенкин А.И. Интеллектуальный анализ данных в системах поддержки принятия решений при тестировании на проникновение // Проблемы информационной безопасности. Компьютерные системы. 2017. № 3. С. 62‒69.

27. Кадан А.М., Доронин А.К. Инфраструктурные облачные решения для задач тестирования на проникновение // Ученые записки ИСГЗ. 2016. Т. 14. № 1. С. 296‒302.

28. Еременко Н.Н., Кокоулин А.Н. Исследование методов тестирования на проникновение в информационных системах // Master's Journal. 2016. № 2. С. 181‒186.

29. Туманов С.А. Средства тестирования информационной системы на проникновение // Доклады Томского государственного университета систем управления и радиоэлектроники. 2015. № 2 (36). С. 73‒79.

30. Кравчук А.В. Модель процесса удаленного анализа защищенности информационных систем и методы повышения его результативности // Труды СПИИРАН. 2015. № 1(38). С. 75‒93.

31. Горбатов В.С., Мещеряков А.А. Сравнительный анализ средств контроля защищенности вычислительной сети // Безопасность информационных технологий. 2013. Т. 20. № 1. С. 43‒48.

32. Pfleeger C.P., Pfleeger S.L., Theofanos M.F. A methodology for penetration testing // Computers & Security. 1989. Т. 8. № 7. С. 613‒620.

33. McDermott J. P. Attack net penetration testing // NSPW. 2000. С. 15‒21.

34. Alisherov F., Sattarova F. Methodology for penetration testing // International Journal of Grid and Distributed Computing. 2009. С. 43‒50.

35. Ami P., Hasan A. Seven phrase penetration testing model // International Journal of Computer Applications. 2012. Т. 59. № 5. С. 16‒20.

36. Holik F., Horalek J., Marik O., Neradova S., Zitta S. Effective penetration testing with Metasploit framework and methodologies // Proceedings of the 15th International Symposium on Computational Intelligence and Informatics (CINTI). IEEE, 2014. PP. 237‒242. DOI:10.1109/CINTI.2014.7028682

37. Herzog P. Open-source security testing methodology manual // Institute for Security and Open Methodologies (ISECOM). 2003. URL: https://untrustednetwork.net/files/osstmm.en.2.1.pdf (дата обращения 12.02.2021)

38. Макаренко С.И. Метод обеспечения устойчивости телекоммуникационной сети за счет использования ее топологической избыточности // Системы управления, связи и безопасности. 2018. № 3. С. 14‒30. DOI: 10.24411/24109916-2018-10302

39. Цветков К.Ю., Макаренко С.И., Михайлов Р.Л. Формирование резервных путей на основе алгоритма Дейкстры в целях повышения устойчивости информационно-телекоммуникационных сетей // Информационно-управляющие системы. 2014. № 2(69). С. 71‒78.

40. Макаренко С.И., Квасов М.Н. Модифицированный алгоритм Беллмана-Форда с формированием кратчайших и резервных путей и его применение для повышения устойчивости телекоммуникационных систем // Инфокоммуникационные технологии. 2016. Т. 14. № 3. С. 264‒274.

41. Макаренко С. И. Обеспечение устойчивости телекоммуникационной сети за счет ее иерархической кластеризации на области маршрутизации // Труды учебных заведений связи. 2018. Т. 4. № 4. С. 54‒67. DOI:10.31854/ 1813-324X-2018-4-4-54-67

42. Макаренко С.И. Локализация областей воздействия дестабилизирующих факторов в сети связи на основе алгоритма иерархической кластеризации Ланса-Вильямса // Радиотехнические и телекоммуникационные системы. 2014. № 4(16). С. 70‒77.

43. Аветисян А.И., Белеванцев А.А., Чукляев И.И. Технологии статического и динамического анализа уязвимостей программного обеспечения // Вопросы кибербезопасности. 2014. № 3(4). С. 20‒28.

44. Мясников А.В. Построение модели информационной системы для автоматизации тестирования на проникновение // Проблемы информационной безопасности. Компьютерные системы. 2020. № 3. С. 32‒39.


Рецензия

Для цитирования:


Макаренко С.И., Смирнов Г.Е. Модель аудита защищенности объекта критической информационной инфраструктуры тестовыми информационно-техническими воздействиями. Труды учебных заведений связи. 2021;7(1):94-104. https://doi.org/10.31854/1813-324X-2021-7-1-94-104

For citation:


Makarenko S., Smirnov G. Model of Security Audit of a Critical Information Infrastructure Object with Use the Test Cyber Attacks. Proceedings of Telecommunication Universities. 2021;7(1):94-104. (In Russ.) https://doi.org/10.31854/1813-324X-2021-7-1-94-104

Просмотров: 670


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)