The Reducing Approaches of Scattering Losses in Polymer Planar Optical Waveguides
https://doi.org/10.31854/1813-324X-2021-7-1-31-40
Abstract
The article presents the development prospects of planar optical waveguides for high-speed data transmission systems optoelectronic buses by polymer materials. The advantages and disadvantages of using nonspecialized polymeric materials for general use are revealed. The polymer planar optical waveguides fabrication technologies are proposed. The main losses types in planar optical waveguides, the reasons for their occurrence, as well as approaches to their reduction are determined. Using the example of PDMS polymer and soft lithography technology, the technological process critical stages of polymer planar optical waveguides production are noted, which contribute to an scattering losses increase. For each stage, algorithms are proposed to prevent an scattering losses increase. These algorithms were implemented in practice in the manufacture of layouts of polymer planar optical waveguides of the optical-electronic data transmission bus.
About the Authors
Т. RadzievskayaRussian Federation
N. Ivanov
Russian Federation
S. Tarasov
Russian Federation
References
1. Ahmanov A.S. Optical Transmission of Information in Super-Computers and Microprocessor Systems. Part 1. LIGHTWAVE. 2008;3:46‒53. (in Russ.)
2. VITA Technologies. Copper versus optical: The battle begins. Available from: http://vita.mil-embedded.com/articles/ copper-versus-optical-battle-begins [Accessed 20th October 2020]
3. Bamiedakis N., Hashim A., Penty R.V., White H. Regenerative polymeric bus architecture for board-level optical interconnects. Optics Express. 2012;20(11):11625‒11636. DOI:10.1364/OE.20.011625
4. Schares L., Kash J.A., Doany F.E., Schow C.L., Schuster C., Kuchta D.M. Terabus: Terabit/Second-Class Card-Level Optical Interconnect Technologies. IEEE Journal of Selected Topics in Quantum Electronics. 2006;12(5):1032–1044. DOI:10.1109/ JSTQE.2006.881906
5. Immonen M., Wu J., Yan H.J., Zhu L.X., Chen P., Rapala-Virtanen T. Development of electro-optical PCBs with embedded waveguides for data center and high performance computing applications. Proceedings of SPIE OPTO, 1‒6 February 2014, San Francisco, USA. Vol. 8991. Optical Interconnects XIV. 2014. DOI:10.1117/12.2039875
6. Sokolov V.I., Ahmanov A.S., Kitaj M.S., Molchanova S.I., Panchenko V.Ya., Troitskaya E.V. Laser Technologies for the Formation of Polymer Elements of Micro and Nanophotonics for High-Speed Information Systems. Available from: http://shatura.laser.ru/laser.ru/30/Polymer_photonics.pdf [Accessed 5th May 2020). (in Russ.)
7. Ahmanov A.S. Optical Transmission of Information in Super-Computers and Microprocessor Systems. Part 2. LIGHTWAVE. 2008;4:52‒55. (in Russ.)
8. Zhu L.X., Immonen M., Wu J., Yan H.J., Ruizhi S., Peifeng C., et al. Electro-optical line cards with multimode polymer waveguides for chip-to-chip interconnects. Proceedings of SPIE/COS Photonics Asia, 9‒11 October 2014, Beijing, China. Vol. 9270. Optoelectronic Devices and Integration V. 2014. DOI:10.1117/12.2071965
9. Karppinen M., Mäkinen J.-T., Kataja K., Tanskanen A., Alajoki T., Karioja P., et all. Embedded optical interconnect on printed wiring board. Proceedings of Photonics Europe, 26‒30 April 2004, Strasbourg, France. Vol. 5453. Micro-Optics, VCSELs, and Photonic Interconnects. 2004. p.150‒164. DOI:10.1117/12.545931
10. Karppinen M., Alajoki T., Tanskanen A., Kataja K., Mäkinen J.-T., Karioja P. , et all. Parallel optical interconnect between surface-mounted devices on FR4 printed wiring board using embedded waveguides and passive optical alignments. Proceedings of SPIE Photonics Europe, 3‒7 April 2006, Strasbourg, France. Vol. 6185. Micro-Optics, VCSELs, and Photonic Interconnects II: Fabrication, Packaging, and Integration. 2006. DOI:10.1117/12.664386
11. Chen S., Pang F., Li K., Wu J., Immonen M., Zhang X., et al. Long distance optical printed circuit board for 10Gbps optical interconnection. Proceedings of Photonics Asia, 5‒7 November 2012, Beijing, China. Vol. 8555. Optoelectronic Devices and Integration IV. 2012. DOI:10.1117/12.999969
12. Zgraggen E. Fabrication and System Integration of Single-Mode Polymer Optical Waveguides. D.Sc. Thesis. Zurich: ETH; 2014. 158 р.
13. Cai D. Optical and Mechanical Aspects on Polysiloxane Based Electrical-Optical-Circuits-Board. D.Sc. Thesis Dortmund: TU Dortmund University; 2008. 129 р. DOI:10.17877/DE290R-8242
14. Ma H., Jen A.K.-Y., Dalton L.R. Polymer-Based Optical Waveguides: Materials, Processing, and Devices. Advanced Materials. 2002;14(19):1339‒1365. DOI:10.1002/1521-4095(20021002)14:19<1339::AID-ADMA1339>3.0.CO;2-O
15. Sergeeva E. Fabrication of polymer-based optofluidic microsystems for optical fluid analysis on printed circuit boards. D.Sc. Thesis. Rostock: University of Rostock; 2019. 143 p.
16. Miller S.E. Integrated Optics: An Introduction. Bell System Technical Journal. 1969;48(7):2059‒2069. DOI:10.1002/ j.1538-7305.1969.tb01165.x
17. Cai D. Polydimethylsiloxane (PDMS) based optical interconnect with copper-clad FR4 substrates. Sensors and Actuators B: Chemical. 2011;160(1):777‒783. DOI:10.1016/j.snb.2011.08.062
18. Immonen M. Fabrication and Characterization of Polymer Optical Waveguides With Integrated Micromirrors for ThreeDimensional Board-Level Optical Interconnects. IEEE Transactions on Electronics Packaging Manufacturing. 2005;28(4):304– 311. DOI:10.1109/TEPM.2005.856538
19. Prajzler V., Neruda M., Nekvindova P., Mikulik P. Properties of Multimode Optical Epoxy Polymer Waveguides Deposited on Silicon and TOPAS Substrate. Radioengineering. 2017;26(1):10‒15. DOI:10.13164/re.2017.0010
20. Ivanov N.N., Radzievskaja T.A. Convergence of Photonics and Radio Electronics Technologies in the Creation of HighSpeed Data Transmission Buses. Proceedings of the IXth International Conference on Infotelecommunications in Science and Education, 26‒27 February 2020, St. Petersburg, Russia. St. Petersburg: The Bonch-Bruevich Saint-Petersburg State University of Telecommunications Publ.; 2020, vol.1. p.510‒514. (in Russ.)
21. Zhou W. Principles and Status of Nanoimprint Lithography. In: Nanoimprint Lithography: An Enabling Process for Nanofabrication. Berlin, Heidelberg: Springer; 2013. 269 p. DOI:10.1007/978-3-642-34428-2
22. Chang-Yen D.A., Eich R.K., Gale B.K. A Monolithic PDMS Waveguide System Fabricated Using Soft-Lithography Techniques. Journal of Lightwave Technology. 2005;23(6):2088‒2093. DOI:10.1109/JLT.2005.849932
23. Cai Z., Qiu W., Shao G., Wang W. A new fabrication method for all-PDMS waveguides. Sensors and Actuators A: Physical. 2013;204:44‒47. DOI:10.1016/j.sna.2013.09.019
24. Madou M.J. Fundamentals of Microfabrication and Nanotechnology. Irvine: CRC Press; 2011. 1992 p. DOI:10.1201/ 9781315274164
25. Mitra S.K. Microfluidics and nanofluidics handbook: Fabrication, implementation, and applications. Irvine: CRC Press; 2011. 624 p. DOI:10.1201/b11188
26. MicroChem. SU-8 3000 Permanent epoxy negaive photoresist (Data Sheet). Available from: http://microchem.com/ pdf/SU-8%203000%20Data%20Sheet.pdf [Accessed 20th October 2020]
27. Manvelova T.A. Polymer Optoelectronic Bus for High-Speed Data Transmission Systems. Journal of Physics: Conference Series. 2019;1400(6). DOI:10.1088/1742-6596/1400/6/066051
Review
For citations:
Radzievskaya Т., Ivanov N., Tarasov S. The Reducing Approaches of Scattering Losses in Polymer Planar Optical Waveguides. Proceedings of Telecommunication Universities. 2021;7(1):31-41. (In Russ.) https://doi.org/10.31854/1813-324X-2021-7-1-31-40