Preview

Proceedings of Telecommunication Universities

Advanced search

Researches of Parameters of Chiral Few-Mode Optical Fiber Pilot Sample with Improved Height of Step Refractive Index Profile

https://doi.org/10.31854/1813-324X-2021-7-1-6-19

Abstract

This work presents results of researhes of fabricated pilot sample of chiral few-mode optical fiber (FMF) with induced twisting of 10 and 66 revolutions per meter, core diameter 11 µm (that almost corresponds to standard singlemode optical fibers), typical “telecommuniction” cladding diameter 125 µm and improved height of step refractive index profile. Proposed few-mode optical fiber supports 4 guided modes over “C”-band. We considered design and selection of desired technological parameters, based on results of computations, performed by both rigorous and approximation methods. Spectral curves of dispersion parameters are reprented as well as results of experimental measurements near-field laser beam profile and spectral and pulse responces of laser-excited optical signals. 

About the Authors

A. Bourdine
Povolzhskiy State University of Telecommunications & Informatics; Research and Production Association S.I. Vavilov State Optical Institute; OptoFiber Lab; The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation


A. Barashkin
Povolzhskiy State University of Telecommunications & Informatics
Russian Federation


V. Burdin
Povolzhskiy State University of Telecommunications & Informatics
Russian Federation


М. Dashkov
Povolzhskiy State University of Telecommunications & Informatics
Russian Federation


V. Demidov
Research and Production Association S.I. Vavilov State Optical Institute
Russian Federation


А. Khokhlov
Research and Production Association S.I. Vavilov State Optical Institute
Russian Federation


E. Ter-Nersesyants
Research and Production Association S.I. Vavilov State Optical Institute
Russian Federation


A. Matrosova
Research and Production Association S.I. Vavilov State Optical Institute; ITMO University
Russian Federation


G. Pchelkin
Research and Production Association S.I. Vavilov State Optical Institute; Peter the Great Saint Petersburg Polytechnic University
Russian Federation


К. Dukel’skii
Research and Production Association S.I. Vavilov State Optical Institute; The Bonch-Bruevich Saint-Petersburg State University of Telecommunications; ITMO University
Russian Federation


A. Evtushenko
Povolzhskiy State University of Telecommunications & Informatics
Russian Federation


Е. Zaitseva
Povolzhskiy State University of Telecommunications & Informatics
Russian Federation


Ya. Ismail
University of KwaZulu-Natal
South Africa


Ju. Yin
University of Science and Technology of China
China


А. Kuznetsov
Kazan National Research Technical University named after A.N. Tupolev ‒ KAI
Russian Federation


О. Morozov
Kazan National Research Technical University named after A.N. Tupolev ‒ KAI
Russian Federation


А. Sakhabutdinov
Kazan National Research Technical University named after A.N. Tupolev ‒ KAI
Russian Federation


F. Petruccione
University of KwaZulu-Natal
South Africa


G. Singh
Malaviya National Institute of Technology
India


М. Tiwari
Malaviya National Institute of Technology
India


V. Janyani
Malaviya National Institute of Technology
India


References

1. Barlow A.J., Ramskov-Hansen J.J., Payne D.N. Birefringence and polarization mode dispersion in spun single-mode fibers. Applied Optics. 1981;20:2962–2968. DOI:10.1364/AO.20.002962

2. Hart A.C. Jr., Huff R.G., Walker K.L. Method of making a fiber having low polarization mode dispersion due to a permanent spin. U.S. Patent, no. 5298047, 29th March 1994.

3. Blaszyk P.E., Christoff W.R., Gallagher D.E., Hawk R.M., Kiefer W.J. Method and apparatus for introducing controlled spin in optical fibers. U.S. Patent, no. 6324872 B1, 4th December 2001.

4. Li M.-J., Chen X., Nolan D.A. Fiber spinning for reducing polarization mode dispersion in single-mode fibers: theory and applications. Proceedings of SPIE. 2003;5247:97–110. DOI:10.1117/12.512063

5. DiGiovanni D.J., Golowich S.E., Jones S.L., Reed W.A. Method of making an improved multimode optical fiber and fiber made by method. Patent U.S., no. 2001019652A1, 06.09.2001.

6. DiGiovanny D.J., DiMarcello F.V., Jiang X.L.; Oulundsen G.E., Pandit S.P. Multimode optical fiber with increased bandwidth. Patent U.S., no. 2004228590A1, 18.11.2004.

7. Gatchin Y., Demidov V., Dukelskii K., Ter-Nersesyants E. Quasi-Single-Mode Fibers with Increased Core Size Based on Non-Hexagonal Type Microstructures. Proc. of Telecom. Universities. 2017;3(3):37–42 (In Russ.) DOI:10.31854/1813-324X2017-3-3-37-42

8. Demidov V., Dukelskii K., Leonov S., Matrosova A. Nonlinear Optical Transformation of Picosecond Laser Pulses in Multimode Microstructured Fibers with Limited Nonlinearity. Proc. of Telecom. Universities. 2018;4(1):61–66. (In Russ.) DOI:10.31854/1813-324X-2018-1-61-66

9. Ananyev V., Demidov V., Leonov S., Nikonorov N. Hollow-Core Antiresonant Fibers with a Large Effective Mode Area for Operation in the Near- and Mid-IR Spectral Regions. Proc. of Telecom. Universities. 2019;5(1):6–14. (in Russ.) DOI:10.31854/ 1813324X-2019-5-1-6-14

10. Agrawal G.P. Nonlinear fiber optics. Burlington: Academic Press; 2012. 648 p.

11. Olszewski J., Szpulak M., Urbanczyk W. Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers. Optics Express. 2005;13(16):6015–6022. DOI:10.1364/opex.13.006015

12. Bourdine A.V. Modeling and simulation of piecewise regular multimode fiber links operating in a few-mode regime. Advances in Optical Technologies. 2013;2013. DOI:10.1155/2013/469389

13. Bourdine, A.V., Delmukhametov, O.R. Calculation of transmission parameters of the launched higher-order modes based on the combination of a modified Gaussian approximation and a finite element method. Telecommunications and Radio Engineering. 2013;72(2):111–123. DOI:10.1615/TelecomRadEng.v72.i2.30

14. Adams M. Introduction to the Theory of Optical Waveguides. Moscow: Mir Publ.; 1984. 512 p. (in Russ.)

15. Snyder A., Love J. Optical Waveguide Theory. Moscow: Radio i sviaz Publ.; 1987. 656 p. (in Russ.)

16. Listvin A.V., Listvin V.N., Shvyrkov D.V. Optical fibers for communication lines. Moscow: LESARart Publ.; 2003. 288 p. (in Russ.)

17. Bourdin A.V. Differential Mode Delay of Different Generations of Quartz Multimode Optical Fibers. Foton-Ekspress. 2008;5-6(69-70):20–22. (in Russ.)

18. Bourdin A.V. About Multimode Optical Fiber Differential Mode Delay Diagnostics. Infokommunikacionnye tehnologii. 2008;6(4):33–38. (in Russ.)

19. Bourdine A.V., Prokopyev V.I., Dmitriev E.V., Yablochkin K.A. Results of conventional field-test equipment application for identification of multimode optical fibers with high DMD. Proceedings of Optical Technologies for Telecommunications, 25‒27 November 2008, Kazan, Russian Federation. 2009. vol.7374. p.73740J-01–73740J-07. DOI:10.1117/12.829038

20. User’s manual for the FSU 975 single fiber fusion splicer by Ericsson. Available from: https://issuu.com/fusionsplicers_org/ docs/ericsson_fsu975_man_20110823_201414 [Accessed 02nd March 2021]

21. Gower J. Optical Communication Systems. Moscow: Radio i sviaz Publ.; 1989. 504 p. (in Russ.)


Review

For citations:


Bourdine A., Barashkin A., Burdin V., Dashkov М., Demidov V., Khokhlov А., Ter-Nersesyants E., Matrosova A., Pchelkin G., Dukel’skii К., Evtushenko A., Zaitseva Е., Ismail Ya., Yin J., Kuznetsov А., Morozov О., Sakhabutdinov А., Petruccione F., Singh G., Tiwari М., Janyani V. Researches of Parameters of Chiral Few-Mode Optical Fiber Pilot Sample with Improved Height of Step Refractive Index Profile. Proceedings of Telecommunication Universities. 2021;7(1):6-19. (In Russ.) https://doi.org/10.31854/1813-324X-2021-7-1-6-19

Views: 1976


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)