Preview

Proceedings of Telecommunication Universities

Advanced search

The Vehicles Positioning in Ultra-Dense 5G/V2X Radio Access Networks Usingthe Extended Kalman Filter

https://doi.org/10.31854/1813-324X-2020-6-4-45-59

Abstract

This work is devoted to the study of mathematical models of vehicle positioning in ultra-dense V2X / 5G radio access networks using the extended Kalman filter. Based on the study of the probability of line-of-sight availability in the conditions of ultra-dense distribution of reference radio access stations and vehicles, as well as existing mathematical prototype positioning models, a new simulation model for constructing the trajectory of a vehicle has been developed to assess compliance with the requirements for the accuracy of coordinate assessment on the example of the scenario of priority passage of intersections. The simulation model implements the procedures for collecting primary angle and rangefinder measurements by reference stations received from the vehicle for subsequent secondary processing using the extended Kalman filter, as a result of which the vehicle trajectory is built in real time. In contrast to the existing prototype models, the simulation model developed in this work makes it possible to assess compliance with the specified requirements and other specifications depending on the current conditions of line-of-sight availability, as well as the accuracy of collecting primary angle measurements determined by the antenna array installed on the support device. The results of simulation are consistent with the known estimates of prototype models and confirm the possibility of achieving an accuracy of up to 1 m for a traffic control scenario with an error in determining the angle of arrival of a signal of 2 °.

About the Authors

G. .. Fokin
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation


A. .. Vladyko
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation


References

1. Фокин Г.А., Кучерявый А.Е. Сетевое позиционирование в экосистеме 5G // Электросвязь. 2020. № 9. С. 51-58. DOI:10.34832/ELSV.2020.10.9.006

2. Фокин, Г. А. Технологии сетевого позиционирования: монография. СПб.: СПбГУТ, 2020. 558 с.

3. Positioning and Location-Awareness in Future 5G Networks // Tampere University of Technology. 2019. URL: http://www.tut.fi/5G/positioning/index.html (дата обращения 11.11.2020).

4. Hakkarainen A., Werner J., Costa M., Leppanen K., Valkama M. High-Efficiency Device Localization in 5G Ultra-Dense Networks: Prospects and Enabling Technologies // Proceedings of the 82nd Vehicular Technology Conference (VTC2015-Fall, Boston, USA, 6-9 September 2015). IEEE, 2015. DOI:10.1109/VTCFall.2015.7390965

5. Werner J., Costa M., Hakkarainen A., Leppanen K., Valkama M. Joint User Node Positioning and Clock Offset Estimation in 5G Ultra-Dense Networks // Proceedings of the Global Communications Conference (GLOBECOM, San Diego, USA, 6-10 December 2015). IEEE, 2015. DOI:10.1109/GLOCOM.2015.7417360

6. Koivisto M., Costa M., Werner J., Heiska K., Talvitie J., Leppänen K., Koivunen V., Valkama M. Joint Device Positioning and Clock Synchronization in 5G Ultra-Dense Networks // IEEE Transactions on Wireless Communications. 2017. Vol. 16. Iss. 5. PP. 2866-2881. DOI:10.1109/TWC.2017.2669963

7. Koivisto M., Costa M., Hakkarainen A., Leppanen K. and Valkama M. Joint 3D Positioning and Network Synchronization in 5G Ultra-Dense Networks Using UKF and EKF // IEEE Globecom Workshops (GC Wkshps, Washington, USA, 4-8 December 2016). IEEE, 2016. DOI:10.1109/GLOCOMW.2016.7848938

8. Koivisto M., Hakkarainen A., Costa M., Kela P., Leppanen K., Valkama M. High-Efficiency Device Positioning and Location-Aware Communications in Dense 5G Networks // IEEE Communications Magazine. 2017. Vol. 55. Iss. 8. PP. 188-195. DOI:10.1109/MCOM.2017.1600655

9. Koivisto M., Hakkarainen A., Costa M., Talvitie J., Heiska K., Leppänen K., et al. Continuous high-accuracy radio positioning of cars in ultra-dense 5G networks // Proceedings of the 13th International Wireless Communications and Mobile Computing Conference (IWCMC, Valencia, Spain, 26-30 June 2017). IEEE, 2017. PP. 115-120. DOI:10.1109/IWCMC.2017.7986272

10. Wang J., Shao Y., Ge Y., Yu R. A Survey of Vehicle to Everything (V2X) Testing // Sensors. 2019. Vol. 19. Iss. 2. DOI:10.3390/s19020334

11. Ko S.W., Chae H., Han K., Lee S., Seo D.W., Huang K. V2X-based vehicular positioning: Opportunities, challenges, and future directions // arXiv Preprint, 2019, arXiv:1908.04606. URL: https://arxiv.org/abs/1908.04606 (дата обращения 20.11.2021)

12. ETSI TS 101 539-2 V1.1.1 (2018-06). Intelligent Transport Systems (ITS); V2X Applications; Part 2: Intersection Collision Risk Warning (ICRW) application requirements specification. ETSI, 2018.

13. Zhang Y., Yang T., Tan J., Qiu T.Z. Research on Transit Signal Priority Strategy of Single Intersection Based on V2X Environment // Proceedings of the 5th International Conference on Transportation Information and Safety (ICTIS, Liverpool, UK, 14-17 July 2019). IEEE, 2019. PP. 356-363. DOI:10.1109/ICTIS.2019.8883556

14. Toledo-Moreo R., Santa J., Ubeda B., Piñana C., Zamora-Izquierdo M.A., Gomez-Skarmeta A.F. Performance Aspects of Navigation Systems for GNSS-Based Road User Charging // Proceedings of the 23rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2010, Portland, USA, 21-24 September 2010). 2010. PP. 1157- 1165.

15. Владыко А.Г., Кучерявый А.Е., Буйневич М.В., Парамонов А.И., Киричек Р.В., Фокин Г.А. и др. Разработка и экспериментальная апробация аппаратно-программной платформы предоставления приоритетного проезда регулируемых перекрестков для общественного, грузового и специального транспорта. Отчет о НИР № АААА-Б19-219080890025-6. СПб: СПбГУТ, 2018. 367 c.

16. Kim H., Ma X., Hamilton B.R. Tracking Low-Precision Clocks with Time-Varying Drifts Using Kalman Filtering // IEEE/ACM Transactions on Networking. 2012. Vol. 20. Iss. 1. PP. 257-270. DOI:10.1109/TNET.2011.2158656

17. METIS D6.1. Simulation guidelines. Mobile and wireless communications Enablers for the Twenty-twenty Information Society (METIS). METIS, 2013.

18. Phased Array Toolbox™ User's Guide, The MathWorks, Inc, September 2019. https://www.mathworks.com/help/ pdf_doc/phased/phased_ug.pdf (дата обращения 20.11.2021)

19. Rec. ITU-R M.2083-0. IMT Vision - Framework and overall objectives of the future development of IMT for 2020 and beyond. ITU, 2015.

20. Report ITU-R M.2412-0. Guidelines for evaluation of radio interface technologies for IMT-2020. ITU, 2017.

21. Киреев А.В., Фокин Г.А. Оценка точности локального позиционирования мобильных устройств с помощью радиокарт и инерциальной навигационной системы // Труды учебных заведений связи. 2017. Том 3. № 4. С. 54-62.

22. Духовницкий О.Г., Рагило М.А., Сиверс М.А., Фокин Г.А. Применение фильтра Калмана в задачах позиционирования // Электросвязь. 2016. № 1. С. 78-81.

23. Sivers M., Fokin G., Dmitriev P., Kireev A., Volgushev D., Al-Odhari A. Indoor Positioning in WiFi and NanoLOC Networks // Proceedings of the 16th International on Next Generation Wired/Wireless Networking (NEW2AN 2016) and 9th Conference on Conference on Internet of Things and Smart Spaces (ruSMART 2016), St. Petersburg, Russia, 26-28 September 2016. Lecture Notes in Computer Science. Cham: Springer, 2016. Vol. 9870. PP. 465-476. DOI:10.1007/978-3-319-46301-8_39


Review

For citations:


Fokin G..., Vladyko A... The Vehicles Positioning in Ultra-Dense 5G/V2X Radio Access Networks Usingthe Extended Kalman Filter. Proceedings of Telecommunication Universities. 2020;6(4):45-59. (In Russ.) https://doi.org/10.31854/1813-324X-2020-6-4-45-59

Views: 1571


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)