Preview

Proceedings of Telecommunication Universities

Advanced search

Prediction of Cloud Computing Resources Based on the Open Source Monitoring System

https://doi.org/10.31854/1813-324X-2020-6-3-100-106

Abstract

The paper describes the universal approach for monitoring the data storage of a globally distributed cloud computing system, which allows you to automate creation of new metrics in the system and predict their behavior for the end users. Since the existing monitoring software products provide built-in scheme only for system metrics like RAM, CPU, disk drives, network traffic, but don’t offer solutions for business functions, IT companies have to design specialized database structure (DB). The data structure proposed in this paper for storing the monitoring statistics is universal and allows you to save resources when orginizing database monitoring on the scale of the GDCCS. The goal of the research is to develop a universal model for monitoring and forecasting of data storage in a globally distributed cloud computing system and its adequacy to real operating conditions.

About the Author

K. .. Kucherova
Peter the Great Saint-Petersburg Polytechnic University
Russian Federation


References

1. Distillery. URL: https://distillery.com (дата обращения 12.08.2020)

2. Dhyani A. Create a Custom Metric in Zabbix. 2016. URL: https://www.tothenew.com/blog/create-a-custom-metric-in- zabbix (дата обращения 12.08.2020)

3. Efimov V.V., Mescheryakov S.V., Shchemelinin D.A., Yakovlev K.A. Integration and Continuous Service Delivery in Globally Distributed Computing System // Университетский научный журнал. 2017. № 30. С. 13-20.

4. Gildeh D. What We Learnt Talking to 60 Companies about Monitoring // Dataloop.IO. 2014. URL: https://dataloopio. wordpress.com/2014/01/30/what-we-learnt-talking-to-60-companies-about-monitoring (дата обращения 12.08.2020)

5. Levey T. Introducing Real-Time Business Metrics // AppDynamics. 2013. URL: https://www.appdynamics.com/blog/news/introducing-real-time-business-metrics (дата обращения 12.08.2020)

6. Cliffe D. Monitoring Business Metrics and Refining Outage Response // PagerDuty. 2015. URL: https://www.pagerduty.com/blog/monitoring-business-metrics (дата обращения 12.08.2020)

7. Prometheus. Open-source Systems Monitoring and Alerting Toolkit. URL: https://prometheus.io (дата обращения 12.08.2020)

8. Nesvold H. Getting into Business with Prometheus. 2016. URL: https://schibsted.com/blog/business-with-prometheus (дата обращения 12.08.2020)

9. Saymon. URL: https://saymon.info/en-version (дата обращения 12.08.2020)

10. Gartner Magic Quadrant for EFSS (Enterprise File Sharing and Sync) // Content Collaboration Platforms. 2018. URL: https://www.gartner.com/en/documents/3881863/magic-quadrant-for-content-collaboration-platforms (дата обращения 12.08.2020)

11. Kucherova K., Mescheryakov S., Shchemelinin D. Prediction Experience and New Model // Proceedings of the 7th Annual International Zabbix Conference (Riga, Latvia, 15-17 September 2017). URL: http://www.zabbix.com/conf2017_agenda.php

12. Kucherova K.N., Mescheryakov S.V., Shchemelinin D.A. Using Predictive Monitoring Models in Cloud Computing Systems. Communications in Computer and Information Science // Proceedings of the 21st International Conference on Distributed Computer and Communication Networks (DCCN 2018, Moscow, Russia, 17-21 September 2018). Cham: Springer, 2018. Vol. 919. PP. 341-352. DOI:10.1007/978-3-319-99447-5_29

13. Mescheryakov S., Shchemelinin D., Efimov V. Adaptive control of cloud computing resources in the internet telecommunication multiservice system // Proceedings of the 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT-2014, St.-Petersburg, Russia, 6-8 October 2014). IEEE, 2014. PP. 287-293. DOI:10.1109/ICUMT.2014.7002117


Review

For citations:


Kucherova K... Prediction of Cloud Computing Resources Based on the Open Source Monitoring System. Proceedings of Telecommunication Universities. 2020;6(3):100-106. (In Russ.) https://doi.org/10.31854/1813-324X-2020-6-3-100-106

Views: 1942


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)