Метод валидации графовых моделей на основе алгоритма эффективных управлений
https://doi.org/10.31854/1813-324X-2020-6-3-58-65
Аннотация
Об авторах
В. С. ВасильевРоссия
А. Н. Целых
Россия
Л. А. Целых
Россия
Список литературы
1. Kosko B. Fuzzy cognitive maps // International Journal of Man-Machine Studies. 1986. Vol. 24. Iss. 1. PP. 65-75. DOI:10.1016/S0020-7373(86)80040-2
2. Salmeron J.L., Mansouri T., Moghadam M.R.S., Mardani A. Learning Fuzzy Cognitive Maps with modified asexual reproduction optimisation algorithm // Knowledge-Based Systems. 2019. Vol. 163. PP. 723-735. DOI:10.1016/j.knosys.2018.09.034
3. Konar A., Chakraborty U.K. Reasoning and unsupervised learning in a fuzzy cognitive map // Information Sciences. 2005. Vol. 170. Iss. 2-4. PP. 419-441. DOI:10.1016/j.ins.2004.03.012
4. Hebb D.O. The Organization of Behavior: A Neuropsychological Theory. London: Psychology Press, 2005. 335 p.
5. Kumbasar T., Eksin İ., Güzelkaya M., Yeşil E. Big Bang Big Crunch Optimization Method Based Fuzzy Model Inversion // Proceedings of the 7th Mexican International Conference on Artificial Intelligence on Advances in Artificial Intelligence (MICAI 2008, Atizapán de Zaragoza, Mexico, 27-31 October 2008). Lecture Notes in Computer Science. Vol. 5317. Berlin, Heidelberg: Springer, 2008. PP. 732-740. DOI:10.1007/978-3-540-88636-5_69
6. Vascak J. Approaches in adaptation of fuzzy cognitive maps for navigation purposes // Proceedings of the 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI, Herlany, Slovakia, 28-30 January 2010). IEEE, 2010. PP. 31-36. DOI:10.1109/SAMI.2010.5423716
7. Papageorgiou E., Stylios C., Groumpos P. Fuzzy Cognitive Map Learning Based on Nonlinear Hebbian Rule // Proceedings of the 16th Australian Conference on Advances in Artificial Intelligence (AI, Perth, Australia, 3-5 December 2003). Lecture Notes in Computer Science. Vol. 2903. Berlin: Springer, Heidelberg, 2003. PP. 256-268. DOI:10.1007/978-3-540-24581-0_22
8. Leu G., Abbass H. A multi-disciplinary review of knowledge acquisition methods: From human to autonomous eliciting agents // Knowledge-Based Systems. 2016. Vol. 105. PP. 1-22. DOI:10.1016/j.knosys.2016.02.012
9. Tselykh A.N., Vasilev V., Tselykh L., Barkovskii S.A. Method Maximizing the Spread of Influence in Directed Signed Weighted Graphs // Advances in Electrical and Electronic Engineering. 2017. Vol. 15. Iss. 2. DOI:10.15598/aeee.v15i2.1950
10. Bertsekas D.P. Constrained Optimization and Lagrange Multiplier Methods. Belmont: Athena Scientific, 1996. PP. 158-297.
11. Tikhonov A., Arsenin V. Solutions of Ill-Posed Problems. New York: Wiley, 1977. 272 p.
12. Banini G.A., Bearman R.A. Application of fuzzy cognitive maps to factors affecting slurry rheology // International Journal of Mineral Processing. 1998. Vol. 52. Iss. 4. PP. 233-244. DOI:10.1016/S0301-7516(97)00071-9
13. Bertsekas D.P. The Method of Multipliers for Equality Constrained Problems // Constrained Optimization and Lagrange Multiplier Methods. New York: Elsevier, 1982. PP. 95-157.
14. Tselykh A., Vasilev V., Tselykh L. Ferreira F.A.F. Influence control method on directed weighted signed graphs with deterministic causality // Annals of Operations Research. 2020. DOI:10.1007/s10479-020-03587-8
15. Tselykh A., Vasilev V., Tselykh L. Assessment of influence productivity in cognitive models // Artificial Intelligence Review. 2020. DOI:10.1007/s10462-020-09823-8
Рецензия
Для цитирования:
Васильев В.С., Целых А.Н., Целых Л.А. Метод валидации графовых моделей на основе алгоритма эффективных управлений. Труды учебных заведений связи. 2020;6(3):58-65. https://doi.org/10.31854/1813-324X-2020-6-3-58-65
For citation:
Vasiliev V..., Tselykh A..., Tselykh L... Method for Validating Graph Models Based on the Effective Control Algorithm. Proceedings of Telecommunication Universities. 2020;6(3):58-65. (In Russ.) https://doi.org/10.31854/1813-324X-2020-6-3-58-65